1. Find disjunctive and conjunctive normal forms, construct the relevant Karnaugh maps and hence compute optimal circuits for the following.

 (a) \(a_1 = (x_1 \land x_2) \lor (((\overline{x_3} \lor x_1) \land \overline{x_2}) \lor x_2) \)

 (b) \(a_2 = (x_1 \lor ((x_1 \land x_2) \lor (\overline{x_1} \land \overline{x_2} \land \overline{x_3}))) \land x_3 \)

 (c) \(a_3 = x_1 \), considered as a boolean expression in the variables \(\{x_1, x_2, x_3\} \).

2. Describe a boolean function corresponding to the logic network below.

 ![Logic Network Diagram]

3. Negate and simplify:

 (a) \(p \rightarrow \forall y(q \land Bx) \)

 (b) \(\forall x \exists y \exists d \forall t \exists q(r \lor \exists m(n \rightarrow \overline{q})) \)

4. Prove that *nand* is functionally complete. That is if we let \(p \ast q \) mean \(\neg(p \land q) \) show that the other connectives, \(\land \), \(\lor \), \(\neg \) and \(\rightarrow \) are expressible in terms of *.

Tutorial Exercises for the Week 28 July–1 August

1. Compute miniterm, maxiterm and optimal expressions corresponding to the expressions with the given Karnaugh maps.

 (a)
 | x | yz | y\overline{z} | \overline{y}z | \overline{y}z |
 |----|----|----------------|----------------|
 | \(x \) | + | + | + | + |
 | \(\overline{x} \) | + | | + | |
2. A nor gate is

\[p \quad \text{nor} \quad q \]

Sketch a logical network equivalent to the one below consisting of only nor gates.

\[\begin{array}{cccc}
q & q\bar{r} & \bar{q}\bar{r} & \bar{q}r \\
p & + & + & + \\
\bar{p} & & + & \\
\end{array} \]

\[\begin{array}{cccc}
p\bar{q} & p\bar{q} & \bar{p}q & pq \\
x\bar{y} & + & + & + \\
\bar{x}\bar{y} & + & + & + \\
x\bar{y} & + & + & + \\
\end{array} \]