1. (i) What properties should an equivalence relation possess?

reflexive, symmetric, transitive.

(ii) Let R be a relation on \{1, 2, 3, 4, 5\} given by

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (4, 5), (5, 4), (2, 5), (5, 2)\}.$$

Explain why R is not an equivalence relation.

Because it's not transitive.
2. Let $A = \{1, 2, 3, \ldots, 7\}$ and $B = \{a, e, i, o, u\}$. Let R be a relation on A given by

$$R = \{(x, y) \in A \times A \mid x \text{ is a factor of } y\} \tag{1.2} \text{ and } S,$$

and S be a relation from A to B defined by

$$S = \{(2, a), (3, e), (5, u), (7, u)\}.$$

(i) Draw the Hasse diagram of R.

(ii) Complete

(a) $S^{-1} = \{(a, 2), (e, 3), (u, 5), (u, 7)\}.$

$$RS = \{(1, a), (1, e), (1, u), (2, a), (3, e), (5, u), (7, u)\}.$$
3. (i) Suppose \(f : \mathbb{R} \to \mathbb{R} \) is given by \(f(x) = \frac{1}{x} \). Explain why \(f \) is not a function.

Because when \(x = 0 \), \(\frac{1}{0} \) is undefined.

(ii) Suppose \(f : \{a, b, c, d\} \to \{a, b, c, d\} \) is given by

\[
f(a) = a, f(b) = b, f(c) = c, f(d) = c.
\]

(a) Explain why \(f \) is not one-to-one.

because both \(f(c) \) and \(f(d) \) equal to \(c \).

(b) Explain why \(f \) is not onto.

Because \(d \) is not included.

(iii) (a) Find the number of all maps from \(A = \{1, 2, 3\} \) to \(B = \{a, b, c, d\} \).

\[
4 \times 4 \times 4 = 4^3 \text{ functions}
\]

(b) Find the number of injective maps from \(A = \{1, 2, 3\} \) to \(B = \{a, b, c, d\} \).

As before, but decreasing options

\[
4 \times 3 \times 2 = 4!
\]
4. (i) Find the gcd of 68 and 20.

\[
\begin{align*}
68 &= 20 \times 3 + 8 \\
20 &= 8 \times 2 + 4 \\
8 &= 4 \times 2 \\
\end{align*}
\]

\[
\therefore \quad \text{gcd}(68, 20) = 4.
\]

(ii) Find integers \(n, m \) so that \(17m + 5n = 1 \).

\[
\begin{align*}
17 &= 5 \times 3 + 2 \\
5 &= 2 \times 2 + 1 \\
\end{align*}
\]

\[
\text{gcd}(17, 5) = 1
\]

\[
\therefore \quad 1 = 5 - 2 \times 2.
\]

\[
\begin{align*}
1 &= 5 - (17 - 5 \times 3) \times 2 \\
&= 5 \times 7 - 17 \times 2 \\
&= 5 \times 7 + (17 \times (-2))
\end{align*}
\]

\[
\therefore \quad 17 \times (-2) + 5 \times 7 = 1
\]

\[
m = -2, \quad n = 7.
\]
(iii) Find the lcm (least common multiple) of 64 and 24.

\[64 = 2 \times 32 = 2^2 \times 16 = 2^2 \times 2^4 = 2^6 \]

\[24 = 2 \times 12 = 2^2 \times 6 = 2^3 \times 3 \]

\[\therefore \text{lcm} = 2^6 \times 3^1. \]