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Tutorial week 6: Partial Differential Equations — PDEs

Separation of Variables and Fourier series

Set: Thursday 28 March 2024 Due: Thursday 18 April 2024 (Week 6)

Read the notes and slides —

all this material will be discussed by the end of week 6.

Tutorial exercises — Week 6

1. Attempt to solve the following PDEs using separation of variables.

If it is possible, determine the resulting ODEs.

(a) tuxx + xut = 0 (b) uxx + utt + xu = 0

Solution:

(a): Write u(x, t) = X(x)T (t) then

tX ′′T + xXT ′ = 0

Divide by xtXT then
X ′′

xX
= −T

′

tT
= K

So
X ′′ = KxX; T ′ = −KtT.

(b): Write u(x, t) = X(x)T (t) then

X ′′T +XT ′′ + xXT = 0

Divide by XT then
X ′′

X
+
T ′′

T
+ x = 0

So
X ′′

X
+ x = −T

′′

T
= K

That is
X ′′ + xX = KX; T ′′ = −KT.
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2. Using separation of variables, find a solution to Laplace’s equation uxx+uyy = 0 on the rectangle
0 < x < a, 0 < y < b with Dirichlet boundary conditions:

u(0, y) = f(y), u(a, y) = g(y), 0 < y < b;

u(x, 0) = h(x), u(x, b) = j(x), 0 ≤ x ≤ a.

Note all four edges are non-zero.
Hint: Consider adding the solutions to 4 simpler problems.

Solution:

Consider these four simpler problems (ui)xx + (ui)yy = 0 with boundary conditions:

(a)

u1(0, y) = f(y), u1(a, y) = 0, 0 < y < b;

u1(x, 0) = 0, u1(x, b) = 0, 0 ≤ x ≤ a.

(b)

u2(0, y) = 0, u2(a, y) = g(y), 0 < y < b;

u2(x, 0) = 0, u2(x, b) = 0, 0 ≤ x ≤ a.

(c)

u3(0, y) = 0, u3(a, y) = 0, 0 < y < b;

u3(x, 0) = h(x), u3(x, b) = 0, 0 ≤ x ≤ a.

(d)

u4(0, y) = 0, u4(a, y) = 0, 0 < y < b;

u4(x, 0) = 0, u4(x, b) = j(x), 0 ≤ x ≤ a.

Each of these 4 sub-problems has only one non-zero edge, and is of the form we explicitly
discussed before the break...

Then consider
u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).

It satisfies the right PDE, and the appropriate boundary conditions...

3. Using separation of variables, find the solution to Laplace’s equation in the semi-infinite strip
0 < x < a, y > 0 with boundary conditions

u(0, y) = 0, y > 0;

u(a, y) = 0, y > 0;

u(x, 0) = f(x), 0 ≤ x ≤ a;

lim
y→∞

u(x, y) = 0 0 < x < a.
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Solution:

First try to separate variables:
U(x, y) = X(x)Y (y).

Then Laplace’s equation becomes

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

Thence, dividing by X(x)Y (y) we have

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= 0

Thence we have a separation constant

X ′′(x)

X(x)
= −k;

Y ′′(y)

Y (y)
= +k.

We have 3 possibilities:

• k < 0:

Then k = −b2 and X ′′(x) = b2X(x) so X(x) = A cosh(bx) +B sinh(bx);
but then the boundary conditions in x imply X(0) = 0 = X(b),
which in turn implies X(x) ≡ 0,
which is uninteresting.

• k = 0:

Then X ′′(x) = 0 so X(x) = A+Bx;
but then the boundary conditions in x imply X(0) = 0 = X(b),
which in turn implies X(x) ≡ 0,
which is uninteresting.

• k > 0:

Then k = +b2 and X ′′(x) = −b2X(x) so X(x) = A cos(bx) +B sin(bx);
but then the boundary conditions in x imply X(0) = 0 = X(b),
which in turn implies A = 0 and sin(ba) = 0,
so b = nπ/a and X(x) = B sin(nπx/a).

But now Y ′′(y) = +b2Y (y) with b > 0, so Y (y) = C exp(by) +D exp(−by);
but then the asymptotic boundary condition in y implies Y (∞) = 0,
which in turn implies C = 0.

At this stage we have

U(x, y) = X(x)Y (y) = B sin(nπx/a) D exp(−nπy/a).

Invoking linear superposition

U(x, y) =
∞∑
n=1

En sin(nπx/a) exp(−nπy/a).
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This satisfies Laplace’s equation and the three homogeneous boundary conditions.

The only remaining condition is U(x, 0) = f(x) which implies

f(x) =
∞∑
n=1

En sin(nπx/a).

This in principle determines the En and we are done.

4. Prove that the Fourier coefficients satisfy:

|A0| ≤
1

2L

∫ +L

−L
|f(x)| dx; |An>0| ≤

1

L

∫ +L

−L
|f(x)| dx;

B0 = 0; |Bn>0| ≤
1

L

∫ +L

−L
|f(x)| dx.

(Much stronger results are actually known.)

Hint: Remember:

A0 =
1

2L

∫ +L

−L
f(x) dx; An>0 =

1

L

∫ +L

−L
f(x) cos(nπx/L) dx;

B0 = 0; Bn>0 =
1

L

∫ +L

−L
f(x) sin(nπx/L) dx.

Solution:

This is merely an application of the standard inequality∣∣∣∣∫ b

a

h(x)dx

∣∣∣∣ ≤ ∫ b

a

|h(x)|dx,

combined with
|f(x) cos(nπx/L)| ≤ |f(x)| | cos(nπx/L)| ≤ |f(x)|,

and
|f(x) sin(nπx/L)| ≤ |f(x)| | sin(nπx/L)| ≤ |f(x)|.

5. Consider the finite sum:

SM(x) =
4

π

{
sin(πx) +

sin(3πx)

3
+

sin(5πx)

5
+ · · ·+ sin([2M + 1]πx)

2M + 1

}
,

which we saw is of interest in analyzing the Gibbs phenomenon for step functions.

(a) Show that:

SM(x) = 4

∫ x

0

{cos(πu) + cos(3πu) + cos(5πu) + · · ·+ cos([2M + 1]πu)} du.

Solution:

Note that ∫ x

0

cos(nπu)du =
sin(nπu)

nπ

∣∣∣∣x
0

=
sin(nπx)

nπ
,

and sum from n = 1 to n = 2M + 1.

4



(b) Show that:

cos(πu) + cos(3πu) + cos(5πu) + · · ·+ cos([2M + 1]πu) =
sin([2M + 2]πu)

2 sin(πu)

Hint: This is “merely” a trig identity.
Hint: Use eiθ = cos θ + i sin θ, and the well-known series

1 + x+ x2 + · · ·+ xm = (1− xm+1)/(1− x).

Solution:

Note

cos(nπx) =
einπx + e−inπx

2
=

1

2

{
(eiπx)n + (e−iπx)n

}
Then

cos(πu) + cos(3πu) + cos(5πu) + · · ·+ cos([2M + 1]πu)

=
1

2

{ ∑
n=1,3,5,...2M+1

(eiπu)n +
∑

n=1,3,5,...2M+1

(e−iπu)n

}

=
1

2

{
eiπu

M∑
m=0

(eiπ2u)m + e−iπu
M∑
m=0

(e−iπ2u)m

}

=
1

2

{
eiπu

1− eiπ[M+1]2u

1− eiπ2u
+ e−iπu

1− e−iπ[M+1]2u

1− e−iπ2u

}
=

1

2

{
1− eiπ[M+1]2u

e−iπu − eiπu
+

1− e−iπ[M+1]2u

eiπu − e−iπu

}
=

1

2

{
eiπ[M+1]2u − e−iπ[M+1]2u

eiπu − e−iπu

}
=

sin([2M + 2]πu)

2 sin(πu)
.

(c) Show that:

SM(x) = 2

∫ x

0

sin([2M + 2]πu)

sin(πu)
du.

Solution:

Given the above, this step is now trivial.

(d) Show that:

SM

(
x

2M + 2

)
= 2

∫ x

0

sin(πu)

sin(πu/[2M + 2])

du

2M + 2
.

Solution:

Given the above, this step is now almost trivial.

Note from part (c)

SM

(
x

2M + 2

)
= 2

∫ x
2M+2

0

sin([2M + 2]πu)

sin(πu)
du.

Then simply change variables: unew = (2M + 2)uold.
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(e) Show that:

lim
M→∞

SM

(
x

2M + 2

)
=

2

π

∫ x

0

sin(πu)

u
du =

2

π

∫ πx

0

sin(u)

u
du =

2

π
Si(πx).

Solution:

Almost trivial.

From the above

lim
M→∞

SM

(
x

2M + 2

)
= 2 lim

M→∞

∫ x

0

sin(πu)

sin(πu/[2M + 2])

du

2M + 2
.

But lima→0 sin(ax)/a = x, so

lim
M→∞

SM

(
x

2M + 2

)
=

2

π

∫ x

0

sin(πu)

u
du =

2

π

∫ πx

0

sin(u)

u
du =

2

π
Si(πx)

as asserted.

This is another way of getting to the key result for the (step-function) Gibbs phenomenon.

(It is very closely related, but not identical to, question 5 of the assignment.)
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