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MATH 301 DIFFERENTIAL EQUATIONS 2024

Tutorial week 6: Partial Differential Equations — PDEs

Separation of Variables and Fourier series

Set: Thursday 28 March 2024 Due: Thursday 18 April 2024 (Week 6)

Read the notes and slides —
all this material will be discussed by the end of week 6.

Tutorial exercises — Week 6

1. Attempt to solve the following PDEs using separation of variables.
If it is possible, determine the resulting ODEs.
(a) tug, + xus =0 (b) Uge + Uy +xu =0
Solution:
(a): Write u(x,t) = X(2)T'(t) then
tX'T+2XT' =0

Divide by zt X'T" then
X// Tl
X T

So
X" = KeX: T = —KtT.

(b): Write u(z,t) = X(x)T'(t) then
X'T+XT"+2XT =0
Divide by X7 then

X" T
7 + ? +x = 0
So X T
i =_—— =K
X TTTT
That is

X"+2X =KX; T'=-KT.
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2. Using separation of variables, find a solution to Laplace’s equation u,, +u,, = 0 on the rectangle
0 <z <a,0 <y <bwith Dirichlet boundary conditions:

u(0,y) = f(y), u(a,y) = 9(y), 0<y<b;
u(z,0) = h(x), u(z,b) = j(z), 0<z<a.

Note all four edges are non-zero.
Hint: Consider adding the solutions to 4 simpler problems.

Solution:

Consider these four simpler problems (u;),, + (4;)y, = 0 with boundary conditions:

(a)

u1(07y):f(y)7 ul(avy):()7 0<Z/<57

uy(z,0) =0, uy(z,b) =0, 0<z<a.
(b)

u2(0,y) = 0, uz(a,y) = 9(y), 0<y<b;

ug(z,0) =0, us(x,0) =0, 0<z<a.
()

u3(0,y) =0, us(a,y) =0, 0<y<b;

ug(z,0) = h(x), uz(x,b) =0, 0<z<a.
(d)

U4(0,y) = 07 U4(a,y) = 07 0< y < b7

ug(z,0) =0, ug(x,0) = j(x), 0<z<a.

Each of these 4 sub-problems has only one non-zero edge, and is of the form we explicitly
discussed before the break...

Then consider
u(m, y) = ul(l’7 y) + UQ('I’ y) + ’LLg(ZL‘, y) + U4<CL’, y)
It satisfies the right PDE, and the appropriate boundary conditions...

3. Using separation of variables, find the solution to Laplace’s equation in the semi-infinite strip
0 <z < a,y >0 with boundary conditions

u(0,y) =0, y > 0;
u(a,y) =0, y > 0;
u@w,0) = fz),  0<z<a
lim w(z,y) =0 0<z<a.
y—o0



Solution:

First try to separate variables:
Ulz,y) = X(2)Y (y).

Then Laplace’s equation becomes
X"(@)Y (y) + X (2)Y"(y) = 0

Thence, dividing by X (x)Y (y) we have

X' V')
X(x)  Y(y)
Thence we have a separation constant
X// Y//
@ _ . YO_,,
X(x) Y(y)

We have 3 possibilities:

o k<O
Then k = —b* and X" (x) = b?*X (z) so X(z) = Acosh(bx) + Bsinh(bz);
but then the boundary conditions in = imply X (0) =0 = X (b),
which in turn implies X (z) =0,
which is uninteresting.
o k=0:
Then X”(z) =0so X(z) = A+ Bux;
but then the boundary conditions in z imply X (0) =0 = X(b),
which in turn implies X (z) =0,
which is uninteresting.
o k>0
Then k = +b? and X" (x) = —b*X(x) so X (x) = Acos(bz) + Bsin(bz);
but then the boundary conditions in = imply X (0) =0 = X (b),
which in turn implies A = 0 and sin(ba) = 0,
so b=nn/a and X (x) = Bsin(nnx/a).
But now Y”(y) = +b*Y (y) with b > 0, so Y (y) = C exp(by) + D exp(—by);
but then the asymptotic boundary condition in y implies Y (c0) = 0,
which in turn implies C' = 0.

At this stage we have
U(xz,y) = X(2)Y (y) = Bsin(nmz/a) Dexp(—nny/a).

Invoking linear superposition

Ulz,y) = Z E,sin(nrzx/a) exp(—nmy/a).

n=1



This satisfies Laplace’s equation and the three homogeneous boundary conditions.

The only remaining condition is U(x,0) = f(z) which implies

flz) = Z E, sin(nmx/a).

This in principle determines the E,, and we are done.

. Prove that the Fourier coefficients satisfy:

1 +L 1 +L
A §—/ f(x)| dx; A, g—/ f(x)] dz;
Al <57 [ @I Al <7 [ 1)

1 +L
B, =0: Buol <7 [ 1f@)] do.

-L
(Much stronger results are actually known.)

Hint: Remember:

1 [t 1 [+t
Ay = 3/, f(x) dx; Apso = /., f(x) cos(nmz/L) dx;
1 [T
By =0; Bso = T f(z) sin(nmx/L) dz.
-L

Solution:

This is merely an application of the standard inequality

[ Hie] < [ e

|f(z) cos(nmz/L)| < |f(x)] | cos(nmz/L)| < |f(x)],

combined with

and
|f(z) sin(nmz/L)| < [f(2)] |sin(nmz/L)| < |f(z)].

. Consider the finite sum:

Sy () = 4 {sin(ﬂx) +

™

sin(3mx) n sin(5mx) P sin([2M + 1|mx)
3 5 2M +1 ’

which we saw is of interest in analyzing the Gibbs phenomenon for step functions.

(a) Show that:
Su(x) =4 /OI {cos(mu) 4 cos(3mu) + cos(5mu) + - - - + cos([2M + 1]wu)} du.

Solution:

Note that x
sin(nru) |©  sin(nmw)

/ cos(nru)du = ———=| = ——=,
0

nm 0 nim

and sum fromn=1ton=2M + 1.



(b) Show that:
sin([2M + 2]mu)

cos(mu) + cos(3mu) + cos(bru) + - - - 4 cos([2M + 1]7u) = > sin ()

Hint: This is “merely” a trig identity.

Hint: Use e = cosf + isin#, and the well-known series
l+z+2>+--+a2m=(1—a2m™/(1-2x).

Solution:
Note ’ ' 1
einme + e~ T . p
cos(nmx) = — =3 {(€™)" + (e7im)m )
Then

cos(mu) + cos(3mu) + cos(bru) + - - - 4 cos([2M + 1]7u)

= % { Z <€i7rU)n + Z (e—iwu)n}

n=1,3,5,...2M+1 n=1,3,5,..2M+1

_ {ezﬂ'u Z (617T2u)m 4 g imu Z <€1ﬂ2u>m}

m=0 m=0

2
. 1 — eiTr[M-‘,—l}Qu i 1 — e—iW[M+1]2u
{6 1 — ei7r2u te 1— €7i7r2u }

1 {1 _ 6z'7r[M—|-1]2u 1 — e—iTr[M—I-l}Qu}
2

G—ZTI"U, — em'u eZTI’U — e—’LTI"U,

e’LTI"LL — 6—’L7T’LL

1 {eiﬂ'[M+1]2u _ 6i7r[M+1}2u}
T2

sin([2M + 2]mu)
2sin(ru)

Sy(x) =2 /0 “ein(2M £ 2Jrw)

sin(mu)

(c) Show that:

Solution:

Given the above, this step is now trivial.
(d) Show that:

< x 5 / v sin(mu) du
M\eM +2) 7 ), sin(ru/[2M +2])2M +2°
Solution:
Given the above, this step is now almost trivial.

x B a2 sin([2M + 2]7u)
S (2]\/[ + 2) B 2/0 sin(7u) du.

Note from part (c)

Then simply change variables: e, = (2M + 2)ugq.
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(e) Show that:
lim SM< i ) = z/ wdu: 2/ Sm(u)du: 2 Si(mx).
0 0

M o0 2M + 2 T U T U T

Solution:
Almost trivial.
From the above

lim S x 9 1i ’ sin(mu) du
11m = 11m .
Moo "M\ 2M + 2 M=o Jy sin(mu/[2M + 2]) 2M + 2

But lim,_,gsin(az)/a = x, so

. x 2 [%sin(mu) 2 (™ sin(u) 2 .
1 = — = — —_—
Mose S (2]\/[ + 2) 7T/0 U du W/O U du T Si(ma)

as asserted.

This is another way of getting to the key result for the (step-function) Gibbs phenomenon.

(It is very closely related, but not identical to, question 5 of the assignment.)




