Victoria University of Wellington
School of Mathematics and Statistics
Te Kura Mātai Tatauranga

MATH 301
Differential equations

Assignment 5: Partial Differential Equations - PDEs

Set: Monday 4 March 2024
Due: Friday 15 March 2019 at 23:59

Note 60 points total; 10 points each question.

1. Classification questions (easy):
(1 point each; 10 points total)
Determine the order of the following PDEs for a function $U(x, y), u(x, y), \psi(x, t)$, or $\Psi(x, y, z)$. Decide if they are linear or not, and if linear, whether or not they are homogeneous. If nonlinear, decide whether or not they are quasi-linear.
(a) $a U_{x x}+b U_{y y}=0$, where $a, b \in \mathbb{R}$ are non-zero.

Solution: $2^{\text {nd }}$ order; linear; homogeneous; (automatically quasi-linear).
QED
(b) $x U_{x}+y U_{y}=0$, where $x, y \in \mathbb{R}$ are non-zero.

Solution: $1^{\text {st }}$ order; linear; homogeneous; (automatically quasi-linear).
(c) $a U U_{x x}+b U_{x} U_{y y}=0$, where $a, b \in \mathbb{R}$ non-zero.

Solution: $2^{\text {nd }}$ order; non-linear; (homogeneity is meaningless); quasi-linear.
QED
(d) $\frac{\partial^{3} U}{\partial^{2} x \partial y}-\frac{\partial U}{\partial y}=x^{2}+y^{2}$

Solution: $3^{\text {rd }}$ order; linear; non-homogeneous; (automatically quasi-linear). QED
(e) $x^{2} U_{y y}-y U_{x}=U$.

Solution: $2^{\text {nd }}$ order; linear; homogeneous; (automatically quasi-linear). QED
(f) $x^{2} U_{y y y y}-y U_{x}=U^{2}$.

Solution: $4^{\text {nd }}$ order; non-linear; (homogeneity is meaningless); quasi-linear. QED
(g) $-i \partial_{t} \psi=\frac{1}{2 m} \nabla^{2} \psi+V(x) \psi$.

Solution: $2^{\text {nd }}$ order; linear; homogeneous; (automatically quasi-linear). QED
(h) $u_{x x} u_{y y}-u_{x y}^{2}=f\left(x, y, u, u_{x}, u_{y}\right)$.

Solution: $2^{\text {nd }}$ order; non-linear; (homogeneity is meaningless); not quasi-linear. QED
(i) $U_{x x}+y U_{y y}=0$.

Solution: $2^{\text {nd }}$ order; linear; homogeneous; (automatically quasi-linear).
(j) $\left(\nabla^{2}\right)^{2} \Psi:=\left[\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}\right]^{2} \Psi=0$.

Solution: $4^{\text {th }}$ order; linear; homogeneous; (automatically quasi-linear).
2. Find general solutions $U(x, y)$ to the following PDEs (straightforward):
(10 points total)
(a) $\frac{\partial U}{\partial x}=x^{2}-y^{2}$.
(3 points)
Solution: Integrate with respect to x, keeping y fixed:

$$
U=\int\left(x^{2}-y^{2}\right) d x=\frac{1}{3} x^{3}-x y^{2}+F(y)
$$

where F is an arbitrary function.
QED
(b) $\frac{\partial U}{\partial x}-\frac{\partial U}{\partial y}=e^{x} e^{-y}$. [Make an appropriate change of variable.]
(4 points)
Solution: Try a change of variables $\xi=x-y, \eta=x+y$. Then

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=\frac{\partial U}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial U}{\partial \eta} \frac{\partial \eta}{\partial x}=\frac{\partial U}{\partial \xi}+\frac{\partial U}{\partial \eta} \\
& \frac{\partial U}{\partial y}=\frac{\partial U}{\partial \xi} \frac{\partial \xi}{\partial y}+\frac{\partial U}{\partial \eta} \frac{\partial \eta}{\partial y}=-\frac{\partial U}{\partial \xi}+\frac{\partial U}{\partial \eta} \\
& \Longrightarrow \quad \frac{\partial U}{\partial x}-\frac{\partial U}{\partial y}=2 \frac{\partial U}{\partial \xi}
\end{aligned}
$$

Since $e^{x} e^{-y}=e^{x-y}=e^{\xi}$, the PDE becomes $\frac{\partial U}{\partial \xi}=\frac{1}{2} e^{\xi}$.
Thence $U(\xi, \eta)=\int \frac{1}{2} e^{\xi} d \xi+F(\eta)=\frac{1}{2} e^{\xi}+F(\eta)$.
Thence $U(x, y)=\frac{1}{2} e^{x-y}+F(x+y)$.
QED
(c) $U_{x x}=\sin y$.
(3 points)
Solution: Integrating twice:

$$
U_{x}=x \sin y+F(y) \quad \Longrightarrow \quad U=\frac{1}{2} x^{2} \sin y+x F(y)+G(y)
$$

where F and G are arbitrary functions.
QED
3. Find general solutions $U(x, y)$ to the following PDEs (some thinking required):
(10 points total)
(a) $a U_{x}+b U_{y}=0$.

Solution: The PDE says $(a, b) \perp\left(U_{x}, U_{y}\right)$, these vectors are perpendicular.
Therefore $(b,-a) \|\left(U_{x}, U_{y}\right)$, these vectors are parallel.
Therefore

$$
U(x, y)=f(b x-a y)
$$

(you could also try finding an appropriate change of variables).
QED
(b) $U_{x} g_{y}(x, y)-U_{y} g_{x}(x, y)=0$. (Treat $g(x, y)$ as given.)

Solution: The PDE says $\left(g_{y},-g_{x}\right) \perp\left(U_{x}, U_{y}\right)$, these vectors are perpendicular.
Therefore $\left(g_{x}, g_{y}\right) \|\left(U_{x}, U_{y}\right)$, these vectors are parallel.
Therefore

$$
U(x, y)=f(g(x, y))
$$

Here $g(x, y)$ is given, and $f(g)$ is an arbitrary function.
QED
(c) $U_{x x y y}=0$.

Solution: Integrating step by step

- $U_{x x y}=f(x)$.
- $U_{x x}=y f(x)+g(x)$.
- $U_{x}=y \int f(x) d x+\int g(x) d x+h(y)$.
- $U=y \iint f(x) d x d x+\iint g(x) d x d x+x h(y)+j(y)$.
- Relabelling the arbitrary functions, we finally have:

$$
U=y F(x)+G(x)+x H(y)+J(y) .
$$

- You can always check by differentiating.

QED
(d) $U_{x x}=y U_{x}+x y$.
(3 points)
Solution: Keeping y fixed, you can view this as a first-order linear ODE in U_{x}.
That is

$$
\partial_{x}\left(U_{x}\right)-y\left(U_{x}\right)=x y
$$

Because it is a first-order linear ODE in U_{x}, you know it is solvable.
Look for an integrating factor:

$$
e^{x y} \partial_{x}\left[e^{-x y} U_{x}\right]=x y
$$

Therefore:

$$
\partial_{x}\left[e^{-x y} U_{x}\right]=x y e^{-x y}
$$

Integrate:

$$
e^{-x y} U_{x}=\int x y e^{-x y} d x+F(y)
$$

Rearrange:

$$
U_{x}=e^{x y} \int x y e^{-x y} d x+e^{x y} F(y)
$$

Integrate:

$$
U=\int\left\{e^{x y} \int x y e^{-x y} d x\right\} d x+\int\left\{e^{x y} F(y)\right\} d x+G(y)
$$

Rearrange:

$$
U=y \int\left\{e^{x y} \int x e^{-x y} d x\right\} d x+F(y) \int\left\{e^{x y}\right\} d x+G(y)
$$

Now do as much as you can of the integrals...

$$
\begin{gathered}
U=y \int\left\{e^{x y} \int\left(-\partial_{y} e^{-x y}\right) d x\right\} d x+F(y)\left\{\frac{e^{x y}}{y}\right\}+G(y) \\
U=-y \int\left\{e^{x y} \partial_{y} \int e^{-x y} d x\right\} d x+e^{x y}\left\{\frac{F(y)}{y}\right\}+G(y) \\
U=-y \int\left\{e^{x y} \partial_{y}\left[-\frac{e^{-x y}}{y}\right]\right\} d x+e^{x y}\left\{\frac{F(y)}{y}\right\}+G(y) \\
U=-y \int\left\{e^{x y}\left[e^{-x y}\left(\frac{x}{y}+\frac{1}{y^{2}}\right)\right]\right\} d x+e^{x y}\left\{\frac{F(y)}{y}\right\}+G(y) \\
U=-y \int\left\{\frac{x}{y}+\frac{1}{y^{2}}\right\} d x+e^{x y}\left\{\frac{F(y)}{y}\right\}+G(y) \\
U=-y\left\{\frac{1}{2} \frac{x^{2}}{y}+\frac{x}{y^{2}}\right\}+e^{x y} \tilde{F}(y)+G(y)
\end{gathered}
$$

Finally we have

$$
U=-\frac{x^{2}}{2}+\frac{x}{y}+e^{x y} \tilde{F}(y)+G(y)
$$

(These integrals could have been done in any of a number of different ways.) Check:

$$
\begin{gathered}
U_{x}=-x+\frac{1}{y}+y e^{x y} \tilde{F}(y) \\
U_{x x}=-1+y^{2} e^{x y} \tilde{F}(y) \\
U_{x x}-y U_{y}=-1+y^{2} e^{x y} \tilde{F}(y)-\left[-x y+y^{2} e^{x y} \tilde{F}(y)\right]=x y
\end{gathered}
$$

OK, it solves the PDE and it has two arbitrary functions - we had the right answer. Alternative technique:
Starting from the PDE $U_{x x}=y U_{x}+x y$ simply integrate in the x direction:

$$
U_{x}=y U+\frac{x^{2} y}{2}+F(y)
$$

This is a first-order linear DE in the x derivatives... Apply the same logic as above...

$$
\begin{gathered}
U_{x}-y U=\frac{x^{2} y}{2}+F(y) \\
e^{x y} \partial_{x}\left(e^{-x y} U\right)=\frac{x^{2} y}{2}+F(y) .
\end{gathered}
$$

Etcetera...
4. Eliminate the arbitrary functions from the following and so obtain partial differential equations of which they are the general solution (straightforward):
(10 points total)
(a) $v=g\left(x^{2}+y^{2}\right)$.
(2 points)
Solution:
One free function, look for a first-order PDE.

$$
v_{x}=2 x g^{\prime}\left(x^{2}+y^{2}\right) ; \quad v_{y}=2 y g^{\prime}\left(x^{2}+y^{2}\right) \quad \Longrightarrow \quad y v_{x}-x v_{y}=0
$$

(b) $v=f\left(x^{2}-y^{2}\right)$.
(2 points)

Solution:

One free function, look for a first-order PDE.

$$
v_{x}=2 x f^{\prime}\left(x^{2}-y^{2}\right) ; \quad v_{y}=-2 y f^{\prime}\left(x^{2}-y^{2}\right) \quad \Longrightarrow \quad y v_{x}+x v_{y}=0
$$

(c) $v=f\left(x^{2}-y^{2}\right)+g\left(x^{2}+y^{2}\right)$.
(3 points)

Solution:

Two free functions, look for a second-order PDE.

$$
\begin{gathered}
v_{x}=2 x f^{\prime}\left(x^{2}-y^{2}\right)+2 x g^{\prime}\left(x^{2}+y^{2}\right) ; \\
v_{y}=-2 y f^{\prime}\left(x^{2}-y^{2}\right)+2 y g^{\prime}\left(x^{2}+y^{2}\right) \\
v_{x x}=2 f^{\prime}\left(x^{2}-y^{2}\right)+2 g^{\prime}\left(x^{2}+y^{2}\right)+4 x^{2} f^{\prime \prime}\left(x^{2}-y^{2}\right)+4 x^{2} g^{\prime \prime}\left(x^{2}+y^{2}\right) \\
v_{y y}=-2 f^{\prime}\left(x^{2}-y^{2}\right)+2 g^{\prime}\left(x^{2}+y^{2}\right)+4 y^{2} f^{\prime \prime}\left(x^{2}-y^{2}\right)+4 y^{2} g^{\prime \prime}\left(x^{2}+y^{2}\right)
\end{gathered}
$$

Then:

$$
\begin{aligned}
& y^{2} v_{x x}-x^{2} v_{y y}=4\left(y^{2}+x^{2}\right) f^{\prime}\left(x^{2}-y^{2}\right)+4\left(y^{2}-x^{2}\right) g^{\prime}\left(x^{2}+y^{2}\right) \\
& y v_{x}-x v_{y}=4 x y f^{\prime}\left(x^{2}-y^{2}\right) ; \quad y v_{x}+x v_{y}=4 x y g^{\prime}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

So:

$$
y^{2} v_{x x}-x^{2} v_{y y}-\left(y^{2} / x\right) v_{x}+\left(x^{2} / y\right) v_{y}=0
$$

Equivalently:

$$
x y^{3} v_{x x}-x^{3} y v_{y y}-y^{2} v_{x}+x^{2} v_{y}=0
$$

(d) $v=h(2 x-y)-g(2 x+y)$.
(3 points)

Solution:

Two free functions, look for a second-order PDE.

$$
\begin{array}{cc}
v_{x}=2 h^{\prime}(2 x-y)-2 g^{\prime}(2 x+y) ; \quad v_{y}=-h^{\prime}(2 x-y)-g^{\prime}(2 x+y) \\
v_{x x}=4 h^{\prime \prime}(2 x-y)-4 g^{\prime \prime}(2 x+y) ; \quad v_{y y}=h^{\prime \prime}(2 x-y)-g^{\prime \prime}(2 x+y) \\
v_{x x}=4 v_{y y}
\end{array}
$$

5. Euler equation: Elliptic/Parabolic/Hyperbolic (10 points)

Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs; and obtain the general solution in each case:
(10 points total)
a. $3 U_{x x}+4 U_{x y}-U_{y y}=0$.
(2 points)
Solution:
Discriminant: $h^{2}-a b=2^{2}-(3)(-1)=7$. Hyperbolic.
Alternative 1 - Determinant: $a b-h^{2}=3(-1)-2^{2}=-7$. Hyperbolic.
Alternative 2 - Determinant: $\operatorname{det}\left[\begin{array}{ll}a & h \\ h & b\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}3 & 2 \\ 2 & -1\end{array}\right]=-7$. Hyperbolic.
Quadratic: $a+2 h z+b z^{2}=0=3+4 z-z^{2} \Longrightarrow$
$z=\left(-h \pm \sqrt{h^{2}-a b}\right) / b=2 \pm \sqrt{7}$.
Apply algorithm: $U(x, y)=F(x+[2+\sqrt{7}] y)+G(x+[2-\sqrt{7}] y)$.
QED.
b. $U_{x x}-2 U_{x y}+U_{y y}=0$.
(2 points)

Solution:

Discriminant: $h^{2}-a b=1^{2}-(1)(1)=0$. Parabolic.
Alternative 1- Determinant: $a b-h^{2}=(1)(1)-1^{2}=0$. Parabolic.
Alternative $2-$ Determinant: $\operatorname{det}\left[\begin{array}{ll}a & h \\ h & b\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=0$. Parabolic.
Quadratic: $a+2 h z+b z^{2}=0=1+2 z-z^{2} \quad \Longrightarrow$
$z=\left(-h \pm \sqrt{h^{2}-a b}\right) / b=1 \pm 0$.
Apply algorithm: $U(x, y)=(x+c y) F(x+y)+G(x+y) ; \quad(c \neq 1)$.
Without loss of generality: $U(x, y)=(x-y) F(x+y)+G(x+y)$.
QED.
c. $4 U_{x x}+U_{y y}=0$.
(2 points)

Solution:

Discriminant: $h^{2}-a b=0^{2}-(4)(1)=-4$. Elliptic.
Alternative 1 - Determinant: $a b-h^{2}=(4)(1)-0^{2}=4$. Elliptic.
Alternative $2-$ Determinant: $\operatorname{det}\left[\begin{array}{cc}a & h \\ h & b\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]=4$. Elliptic.
Quadratic: $a+2 h z+b z^{2}=0=4+0 z-z^{2} \quad \Longrightarrow$
$z=-h \pm \sqrt{h^{2}-a b}= \pm 2 i$.
Apply algorithm: $U(x, y)=F(x+2 i y)+G(x-2 i y)$.
QED.
d. $U_{x x}+4 U_{x y}+4 U_{y y}=0$.
(2 points)

Solution:

Discriminant: $h^{2}-a b=2^{2}-(1)(4)=0$. Parabolic.
Alternative 1 - Determinant: $\left.a b-h^{2}=(1)(4)\right)-2^{2}=0$. Parabolic.
Alternative 2 - Determinant: $\operatorname{det}\left[\begin{array}{ll}a & h \\ h & b\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]=0$. Pararbolic.
Quadratic: $a+2 h z+b z^{2}=0=1+4 z+4 z^{2} \Longrightarrow$
$z=\left(-h \pm \sqrt{h^{2}-a b}\right) / b=-\frac{1}{2} \pm 0$.
Apply algorithm: $U(x, y)=(x+c y) F(x-y / 2)+G(x-y / 2) ; \quad(c \neq 1 / 2)$.
Without loss of generality: $U(x, y)=(x+y / 2) F(x-y / 2)+G(x-y / 2)$.
Without loss of generality set $c \rightarrow 0$ and rescale: $U(x, y)=x \tilde{F}(2 x-y)+\tilde{G}(2 x-y)$. QED.
e. $U_{y y}+2 U_{x x}=0$.

Solution:

First re-order: $2 U_{x x}+U_{y y}=0$
Discriminant: $h^{2}-a b=0^{2}-(2)(1)=-2$. Elliptic.
Alternative 1 - Determinant: $a b-h^{2}=(1)(2)-0^{2}=2$. Elliptic.
Alternative 2 - Determinant: $\operatorname{det}\left[\begin{array}{ll}a & h \\ h & b\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]=2$. Elliptic.
Quadratic: $a+2 h z+b z^{2}=0=2+0 z+z^{2} \quad \Longrightarrow$
$z=\left(-h \pm \sqrt{h^{2}-a b}\right) / b= \pm \sqrt{2} i$.
Apply algorithm: $U(x, y)=F(x+i y \sqrt{2})+G(x-i y \sqrt{2})$.
QED.
6. Euler PDE (10 points)

Starting with the constant-coefficient Euler PDE

$$
a U_{x x}+2 h U_{x y}+b U_{y y}=0
$$

show that there is a change of independent variables $(x, y) \rightarrow(X, Y)$, somewhat different from the change of variables considered in class, such that in terms of the new independent variables

$$
U_{X X}+\epsilon U_{Y Y}=0,
$$

where $\epsilon \in\{-1,0,+1\}$.

Solution:

You can do this in any of at least three ways:

- Adapting and modifying the constant-coefficient argument I have already given.

That is, by first transforming $(x, y) \rightarrow(s, t)$, and then following that by a second transformation $(s, t) \rightarrow(X, Y)$.

- Looking ahead a little in the notes to the variable-coefficient Euler equation, and adapting that argument.
- Or you could just come up with your own proof.

Let's try the first option:

- Using the argument already given in the lectures, transforming $(x, y) \rightarrow(s, t)$ yields:
- If the Euler equation is hyperbolic then $U_{s t}=0$, with s and t real.

In this case we simply choose the second transformation to be $X=s+t$ and $Y=s-t$ and note that

$$
\begin{aligned}
& U_{X X}=U_{s s}+2 U_{s t}+U_{t t} \\
& U_{Y Y}=U_{s s}-2 U_{s t}+U_{t t}
\end{aligned}
$$

and so

$$
U_{X X}-U_{Y Y}=4 U_{s t}=0
$$

and we are done.

- If the the Euler equation is parabolic then $U_{s s}=0$, with s and t real.

In this case we simply choose the second transformation to be $X=s$ and so $U_{X X}=0$ and we are done.

- If the Euler equation is elliptic then $U_{s t}=0$ with s and t complex; and note that in this situation s and t are always complex conjugates.
In this case we simply choose the second transformation to be $s=X+i Y$ and $t=$ $X-i Y$, where X and Y are now real, and note that

$$
U_{s t}=\left(\partial_{X}+i \partial_{Y}\right)\left(\partial_{X}-i \partial_{Y}\right) U=U_{X X}+U_{Y Y}=0
$$

and we are done.

- That is - collecting the three separate cases - we have

$$
U_{X X}+\epsilon U_{Y Y}=0
$$

with $\epsilon=-1$ for hyperbolic, $\epsilon=0$ for parabolic, and $\epsilon=+1$ for elliptic.
QED
Let's try the second option:

- Here is another way of doing things: We can rewrite the Euler PDE as

$$
\left(\partial_{x}, \partial_{y}\right)\left[\begin{array}{ll}
a & h \\
h & b
\end{array}\right]\binom{\partial_{x}}{\partial_{y}} U=0
$$

Concentrate on the matrix

$$
E=\left[\begin{array}{ll}
a & h \\
h & b
\end{array}\right]
$$

This is a real symmetric matrix so you know you can always diagonalize it using orthogonal transformations (rotations). In the new (\tilde{x}, \tilde{y}) coordinate system one has

$$
\left(\partial_{\tilde{x}}, \partial_{\tilde{y}}\right)\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\binom{\partial_{\tilde{x}}}{\partial_{\tilde{y}}} U=0
$$

where λ_{1} and λ_{2} are the two eigenvalues of the matrix E.
If both eigenvalues have the same sign the Euler PDE is elliptic; if one of the eigenvalues is zero the Euler PDE is parabolic; if the two eigenvalues have different sign the Euler PDE is hyperbolic. (If both eigenvalues are zero then the original matrix $E=0$ and the whole PDE s trivial.)

- If the system is elliptic choose $X=\tilde{x} / \sqrt{\left|\lambda_{1}\right|}$ and $Y=\tilde{y} / \sqrt{\left|\lambda_{2}\right|}$, then

$$
\left(\partial_{X}, \partial_{Y}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\binom{\partial_{X}}{\partial_{Y}} U=0
$$

and we are done.

- If the system is parabolic, re-order the coordinates so that $\lambda_{1} \neq 0$ and choose $X=$ $\tilde{x} / \sqrt{\lambda_{1}}$ and $Y=\tilde{y}$. Then

$$
\left(\partial_{X}, \partial_{Y}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\binom{\partial_{X}}{\partial_{Y}} U=0
$$

and we are done.

- If the system is hyperbolic, re-order the coordinates so that $\lambda_{1}>0$ and choose $X=$ $\tilde{x} / \sqrt{\lambda_{1}}$ and $Y=\tilde{y} / \sqrt{\left|\lambda_{2}\right|}$. Then

$$
\left(\partial_{X}, \partial_{Y}\right)\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\binom{\partial_{X}}{\partial_{Y}} U=0
$$

and we are done.
That is - we have

$$
U_{X X}+\epsilon U_{Y Y}=0
$$

with $\epsilon=-1$ for hyperbolic, $\epsilon=-0$ for parabolic, and $\epsilon=+1$ for elliptic.
There are many other ways of getting to the same result - these two techniques are just the two most obvious routes.

