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MATH 301 DIFFERENTIAL EQUATIONS
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Set: Monday 4 March 2024

Assignment 5: Partial Differential Equations — PDEs

Note 60 points total; 10 points each question.

1. Classification questions (easy):

Due: Friday 15 March 2019 at 23:59

(1 point each; 10 points total)

Determine the order of the following PDEs for a function U(z,y), u(z,y), ¥(x,t), or ¥U(z,y, z).
Decide if they are linear or not, and if linear, whether or not they are homogeneous.
If nonlinear, decide whether or not they are quasi-linear.

(a)

(b)

(c)

()

(e)

(f)

(2)

()

(i)

()

aUyy + bUy, = 0, where a,b € R are non-zero.

Solution: 2" order; linear; homogeneous; (automatically quasi-linear).

xU, +yU, = 0, where z,y € R are non-zero.

Solution: 1% order; linear; homogeneous; (automatically quasi-linear).

aUUy,, + bU,U,, = 0, where a,b € R non-zero.

Solution: 2" order; non-linear; (homogeneity is meaningless); quasi-linear.
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Solution: 3"¢ order; linear; non-homogeneous; (automatically quasi-linear).

2*Uy,, —yU, =U.

Solution: 2"¢ order; linear; homogeneous; (automatically quasi-linear).

22Uy — yU, = U2

Solution: 4™ order; non-linear; (homogeneity is meaningless); quasi-linear.

—i0p) = 5=V + V(2).

Solution: 2"¢ order; linear; homogeneous; (automatically quasi-linear).

2
UgrUyy — uxy - ('Ta Y, U, Ug, uy)-

Solution: 2"¢ order; non-linear; (homogeneity is meaningless); not quasi-linear.

Upe +y Uy =0

Solution: 2"¢ order; linear; homogeneous; (automatically quasi-linear).
(V2?2 W= [+ 82+ 02" = 0.

Solution: 4 order; linear; homogeneous; (automatically quasi-linear).

QED

QED

QED

QED

QED

QED

QED

QED

QED

QED



2. Find general solutions U(zx,y) to the following PDEs (straightforward): (10 points total)

(a) g—g =% — 9% (3 points)

Solution: Integrate with respect to z, keeping y fixed:

1
U= [~y do = ga® — a4 F(),

3
where F'is an arbitrary function. QED
ou  oU
(b) gy = e*e V. [Make an appropriate change of variable.] (4 points)
T Y

Solution: Try a change of variables ¢ = x —y, n =z +y. Then

oU _ovog ovoy _oU  ou
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or Oy B 8_5
Since e®e™¥ = ¥ = €f, the PDE becomes 88—[5] = %ef.
Thence U(§,n) = [ 3e*dE + F(n) = 3¢* + F(n).
Thence U(z,y) = 3¢* ¥ + F(z +y). QED
(¢) Uy =siny. (3 points)

Solution: Integrating twice:

1
U, = zsiny + F(y) = U:§xQSiny+xF(y)+G(y),
where F' and G are arbitrary functions. QED

3. Find general solutions U(z,y) to the following PDEs (some thinking required):
(10 points total)

(a) aU, +bU, = 0. (2 points)
Solution: The PDE says (a,b) L (U, U,), these vectors are perpendicular.
Therefore (b, —a) || (U, Uy), these vectors are parallel.
Therefore

Ulz,y) = f(bx — ay).
(you could also try finding an appropriate change of variables). QED



(b)

U gy(z,y) — Uy go(x,y) = 0. (Treat g(z,y) as given.) (2 points)
Solution: The PDE says (gy, —¢.) L (Uy, U,), these vectors are perpendicular.
Therefore (g.,9y) || (Us, Uy), these vectors are parallel.

Therefore
Ulz,y) = f(g(z,y)).
Here g(z,y) is given, and f(g) is an arbitrary function. QED
Uszyy = 0. (3 points)
Solution: Integrating step by step
¢ Uy = f(a)

o Up =yf(z) +g(x).

o U=y [ fla)dz + [ g(x)dz + h(y).

o U=y [ [ flx)dedz+ [ [ g(x)dzdz + zh(y) + j(y).
e Relabelling the arbitrary functions, we finally have:

U=yF(z)+ G(x)+zH(y) + J(y).

e You can always check by differentiating. QED
Upr =y Uy + xy. (3 points)
Solution: Keeping y fixed, you can view this as a first-order linear ODE in U,.

That is

Ou(Uz) — y(Us) = zy.
Because it is a first-order linear ODE in U,, you know it is solvable.
Look for an integrating factor:

e™ 0, [e*wy Um} =1y

Therefore:
Oy [e_xy Uz] =zxye Y
Integrate:
e WU, = /xy e Ydx + F(y)
Rearrange:
U, =e" /xy e Ydx + e™ F(y)
Integrate:
U= / {e“’ /xy e“”ydx} dx + / {e" F(y)}dz + G(y)

Rearrange:

U=y e [ xe ™drpdr+ Fly) [ {e" }dx+ G(y)
e Jeemicparsro |



Now do as much as you can of the integrals...

U=y /{ew /(—aye—ry) dx} de + F(y) {%y}JrG(y)
U=—y /{ew ay/e—wdx}dHeW { W) }+G
oo fleal e ()

e e ()
Jasd

1
U= {x —Q}dx—l—exy{ y + G(y
Yy

U=—y {%%+y }+e$yF( )+ G(y)

Finally we have

1'2

€T ~
U= —?+§+e‘”y F(y) +G(y)
(These integrals could have been done in any of a number of different ways.)
Check:

1 -
Up=—a+ " + ye™ F(y)
Uxm =—1 + erxyF(y)
Upe —yU, = =1+ er“’F(y) — |—zy + y2exy}~7’(y) =2y

OK, it solves the PDE and it has two arbitrary functions — we had the right answer.
Alternative technique:

Starting from the PDE U,, = y U, + xy simply integrate in the x direction:

This is a first-order linear DE in the x derivatives... Apply the same logic as above...

%y

2

e, (e U) = % + F(y).

FEtcetera. ..
QED



4. Eliminate the arbitrary functions from the following and so obtain partial differential equations

of which they are the general solution (straightforward): (10 points total)
(a) v=g(x®+ y?). (2 points)
Solution:

(b)

One free function, look for a first-order PDE.
ve = 224 (2% + y?); vy = ug (22 + 1) =  yv, — zv, = 0.

v=f(z* —y?). (2 points)
Solution:
One free function, look for a first-order PDE.

v, = 2z f'(2* — y°); vy = =2yf'(z* —y*) = yv,+av,=0.

v=f(z* = y*) + g(a® +9*). (3 points)
Solution:

Two free functions, look for a second-order PDE.

v, =2z f' (2% — y°) + 2zg (2% + v°);

v, = =2yf'(z* — y*) + 2yg' (* + °)
Vpg = 2f’(1’2 . y2) + 291(x2 +y2) _’_41,2]0//(1,2 . y2) +41,29//(x2 +y2)
vy = =2 (2> = y*) + 2¢'(2* + v*) + WP " (2° — ) + 4y°q" (27 + yP)

Then:

Y 0re — 220y, = 47 + 2?) ['(2® — ) + 4(y* — 2®)g (2® + o)

yv, — av, = dzy f'(2? — y?); yu, + zv, = dzyg (2 + y°)
So:

Y ure — 220y, — (Y2 /200 + (22 /y)v, = 0.
Equivalently:
LY Vyy — Y Vyy — y? vy + 2? vy = 0.

v="h2z—-y)— g2z +vy). (3 points)
Solution:

Two free functions, look for a second-order PDE.
vy = 20 (22 — y) — 2¢'(2x + v); vy, =—h(2x—y)— g2z +y)

Ver = 40" (22 — y) — 49" (22 + y); Vyy = ' (22 —y) — ¢"(2x + y)

Vgz = 40y,.



5. Euler equation: Elliptic/Parabolic/Hyperbolic (10 points)
Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs;

and obtain the general solution in each case: (10 points total)
a. 3Ug +4U,, — Uy, = 0. (2 points)
Solution:

Discriminant: h?* — ab = 22 — (3)(—1) = 7. Hyperbolic.
Alternative 1 — Determinant: ab — h? = 3(—1) — 22 = —7. Hyperbolic.

Alternative 2 — Determinant: det { Z }bl } = det [ g) _21 ] = —7. Hyperbolic.

Quadratic: a +2hz +b22=0=3+42 — 22 =

z=(—h+vhZ—ab)/b=2+ 7.

Apply algorithm: U(z,y) = F(x + [2+ VTly) + G(z + [2 — VT]y). QED.
b. Upy —2U,y, + Uy, = 0. (2 points)
Solution:

Discriminant: h? —ab = 12 — (1)(1) = 0. Parabolic.
Alternative 1— Determinant: ab — h? = (1)(1) — 1> = 0. Parabolic.

Alternative 2 — Determinant: det { a h } = det [ } 1 } = (0. Parabolic.

h b
Quadratic: a +2hz +b22=0=1+22 - 2> —
z=(—h+tvh?>—ab)/b=1+£0.
Apply algorithm: U(z,y) = (z +cy) Flx +y) + Gz +y); (c#1).

Without loss of generality: U(z,y) = (z —y) F(x +y) + G(x + y). QED.
c. 4Uz, + Uy, = 0. (2 points)
Solution:

Discriminant: h? — ab = 0* — (4)(1) = —4. Elliptic.
Alternative 1 — Determinant: ab — h? = (4)(1) — 0> = 4. Elliptic.

Alternative 2 — Determinant: det [ Z Z } = det [ g (1) } = 4. Elliptic.

Quadratic: a +2hz +b22=0=4+0z — 2> —

z=—h+vVh? —ab=+2.

Apply algorithm: U(x,y) = F(x + 2iy) + G(x — 2iy). QED.
d. Upp +4Uy, +4U,, = 0. (2 points)
Solution:

Discriminant: h? — ab = 2% — (1)(4) = 0. Parabolic.
Alternative 1 — Determinant: ab — h? = (1)(4)) — 22 = 0. Parabolic.

Alternative 2 — Determinant: det [ a h } = det [ ; i } = 0. Pararbolic.

h b
Quadratic: a +2hz +022=0=1+42z+42> —

z=(—h£tVh?—ab)/b= -3 £0.

Apply algorithm: U(x,y) = (z + cy) F(x —y/2) + G(x —y/2); (c#1/2).

Without loss of generality: U(x,y) = (z +y/2) F(x —y/2) + G(x — y/2).

Without loss of generality set ¢ — 0 and rescale: U(z,y) =« F(2z —y)+G(2z —y). QED.

6



e. Uy +2U,, = 0. (2 points)
Solution:
First re-order: 2U,, +U,, =0
Discriminant: h?* — ab = 0% — (2)(1) = —2. Elliptic.
Alternative 1 — Determinant: ab — h% = (1)(2) — 0> = 2. Elliptic.

Alternative 2 — Determinant: det { Z Z } = det [ (2) (1) } = 2. Elliptic.

Quadratic: a +2hz +022=0=2+02+ 2> —
2= (=h++vh%—ab)/b=42i.
Apply algorithm: U(z,y) = F(z +iyv/2) + G(x — iyv/2). QED.
6. Euler PDE (10 points)
Starting with the constant-coefficient Euler PDE

a Upy +2h Uy +0 Uy, =0,

show that there is a change of independent variables (z,y) — (X,Y), somewhat different from
the change of variables considered in class, such that in terms of the new independent variables

Uxx+€Uyy:O,

where € € {—1,0,+1}.
Solution:

You can do this in any of at least three ways:

e Adapting and modifying the constant-coefficient argument I have already given.

That is, by first transforming (z,y) — (s,t), and then following that by a second
transformation (s,t) — (X,Y).

e Looking ahead a little in the notes to the variable-coefficient Euler equation, and adapting
that argument.

e Or you could just come up with your own proof.
Let’s try the first option:

e Using the argument already given in the lectures, transforming (z,y) — (s,t) yields:

— If the Euler equation is hyperbolic then Uy = 0, with s and t real.
In this case we simply choose the second transformation to be X = s+tand Y =s—t

and note that
UXX - Uss + 2Ust + Utt

UYY = Uss - 2Ust + Utt

and so
Uxx —Uyy =4Us =0

and we are done.



— If the the Euler equation is parabolic then Uy, = 0, with s and ¢ real.
In this case we simply choose the second transformation to be X = s and so Uxx =0
and we are done.

— If the Euler equation is elliptic then Uy = 0 with s and ¢ complex; and note that in
this situation s and t are always complex conjugates.
In this case we simply choose the second transformation to be s = X +¢Y and t =
X — 1Y, where X and Y are now real, and note that

Ust == (8X —f—lay)(ax - Zay)U - UXX + UYY == 0

and we are done.
— That is — collecting the three separate cases — we have

UXX +e€ Uyy =0
with e = —1 for hyperbolic, ¢ = 0 for parabolic, and ¢ = 41 for elliptic. QED
Let’s try the second option:

e Here is another way of doing things: We can rewrite the Euler PDE as

i E)(3)o

a h
E =
This is a real symmetric matrix so you know you can always diagonalize it using orthogonal
transformations (rotations). In the new (Z,7) coordinate system one has

ol 2] (8 )

where A\; and Ay are the two eigenvalues of the matrix E.

Concentrate on the matrix

If both eigenvalues have the same sign the Euler PDE is elliptic; if one of the eigenvalues is
zero the Euler PDE is parabolic; if the two eigenvalues have different sign the Euler PDE
is hyperbolic. (If both eigenvalues are zero then the original matrix £ = 0 and the whole
PDE s trivial.)

— If the system is elliptic choose X = z/1/|A\1| and Y = g/4/|A2|, then
10 Ox B
e[ 7] (3o

— If the system is parabolic, re-order the coordinates so that A\; # 0 and choose X =
z/v/A and Y = g. Then

[ 1 8)(3 )

and we are done.

and we are done.



— If the system is hyperbolic, re-order the coordinates so that A; > 0 and choose X =

/v and Y = j/1/|A\2|. Then

w3 45 oo

and we are done.

That is — we have
UXX + EUYY =0

with e = —1 for hyperbolic, e = —0 for parabolic, and € = +1 for elliptic. QED

There are many other ways of getting to the same result — these two techniques are just the
two most obvious routes.




