Victoria University of Wellington
School of Mathematics and Statistics
Te Kura Mātai Tatauranga

MATH 301
Differential equations

Tutorial week 4: Frobenius-Mayer

1. Frobenius-Mayer:

A vector field V is called conservative iff curl $V=0$. (Also written as $\nabla \times V=0$.)
It is a well known fact (Calculus 2) that if V is a conservative vector field on an open subset W of \mathbb{R}^{3}, then there is a function $U(x, y, z)$ such that $V=-\operatorname{grad} U$ on W. (Also written as $V=-\nabla U$.
a. Show that the system of PDEs $\operatorname{grad} U=-V$ is a Frobenius system, (a particularly simple Frobenius system), and find the appropriate consistency condition that is needed to apply the Frobenius Complete Integrability theorem.
Solution: Write $\operatorname{grad} U=-V$ in the form

$$
\frac{\partial U(x, y, z)}{\partial x^{i}}=-V_{i}(x, y, z)
$$

This is a Frobenius system with one dependent variable, three independent variables, and no U dependence on the RHS - so the system is actually linear as opposed to the more typical quasi-linear case.
Because the RHS has no U dependence, the Frobenius integrability condition reduces to

$$
\begin{aligned}
\frac{\partial V_{i}}{\partial x^{j}}=\frac{\partial V_{j}}{\partial x_{i}} \Longleftrightarrow \partial_{i} V_{j}-\partial_{j} V_{i} & \Longleftrightarrow \quad \epsilon^{i j k}\left[\partial_{i} V_{j}-\partial_{j} V_{i}\right]=0 \\
& \Longleftrightarrow \quad \nabla \times \mathbf{V}=0
\end{aligned}
$$

b. Find the function U if:
i. $\vec{V}=x y z \vec{i}+\left(x^{2} z / 2-z \sin (y z)\right) \vec{j}+\left(x^{2} y / 2-y \sin (y z)\right) \vec{k}$.

Solution: First check the consistency condition

$$
\begin{aligned}
& \nabla \times \vec{V}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x y z & x^{2} z / 2-z \sin (y z) & x^{2} y / 2-y \sin (y z)
\end{array}\right| \\
& =\vec{i}\left(\left[x^{2} / 2-\sin (y z)-y z \cos (y z)\right]-\left[x^{2} / 2-\sin (y z)-y z \cos (y z)\right]\right) \\
& +\vec{j}(-[x y]+[x y])+\vec{k}([x z]-[x z])=\overrightarrow{0} .
\end{aligned}
$$

So yes, the consistency condition is satisfied.
There are now many different ways of calculating $U(x, y, z)$.
One of them is the following: Rewrite the system of PDEs to be solved as

$$
\begin{gathered}
\partial_{x} U=x y z \\
\partial_{y} U=x^{2} z / 2-z \sin (y z) \\
\partial_{z} U=x^{2} y / 2-y \sin (y z)
\end{gathered}
$$

Integrate each of these PDE's independently, introducing suitable arbitrary functions:

$$
\begin{gathered}
U=x^{2} y z / 2+f(y, z) \\
U=x^{2} y z / 2+\cos (y z)+g(x, z) \\
U=x^{2} y z / 2+\cos (y z)+h(x, y)
\end{gathered}
$$

But all three of these equations must hold simultaneously.
Subtracting the last 2 equations we see

$$
g(x, z)=h(x, y)
$$

which can only be true iff

$$
g(x, z)=h(x, y)=j(x)
$$

But then subtracting the first 2 equations we have

$$
f(y, z)=\cos (y z)+j(x)
$$

which can only be true iff

$$
f(y, z)=\cos (y z)+k ; \quad j(x)=k
$$

whence all 3 equations now agree that

$$
U=x^{2} y z / 2+\cos (y z)+k
$$

You can now check this by differentiating.
[You could also get the same result by performing a line integral along any arbitrary path starting at (say) the origin, out to the point (x, y, z).]
ii. $\vec{V}=\left(A / r^{3}\right) \vec{r}$.

Here A is some arbitrary but fixed constant, and $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ is the usual radius vector, \vec{r}, and $r=|r|$.
Solution: We wish to solve

$$
\nabla U=-\vec{V}=-\left(A / r^{3}\right) \vec{r}=-\left(A / r^{2}\right) \hat{r}
$$

By inspection

$$
U=A / r+C
$$

This is just the usual $1 / r$ potential coming from an inverse-square law...

