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F- G
@ Lectures:

o Monday; 12:00-12:50; MYLT 102.
e Tuesday; 12:00-12:50; MYLT 220.
o Friday; 12:00-12:50; MYLT 220.
@ Tutorial:

o Thursday; 12:00-12:50; MYLT 220.
@ Lecturers:
o Part 1: Matt Visser.
o Part 2: Dimitrios Mitsotakis.
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Euler Equation: Standard examples:

Euler Equation:
Standard examples

Matt Visser (VUW) Math 301 — PDEs — 2024



Euler Equation: Standard examples:

I'll now give a catalogue of standard examples of Euler PDEs that you
should learn to recognize.
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The Wave Equation:

(Typical of a hyperbolic PDE).

1
UXX_ ? Utt =0.

Here, U(x, t) represents the displacement at point x and at time t of
a string from its equilibrium position.

That is, U(x, t) is the shape of the string at time t.

The constant c is the velocity of the wave disturbance.

The same equation can be used to describe sound waves or light
waves; at least in flat spacetime.

The generalizations to get to curved spacetime are not too onerous,
but not appropriate for Math 301.
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The Wave Equation:

@ Usually you know:

o That the string is fixed at the origin x = 0 and at the end-point
(x =L, say).

o The initial shape of the string, U(x,0).

o The velocity of each point x of the string, U;(x,0).
[most often this will be zero, the string will start from rest].

o Conditions of this sort, where you know initial values of the function
and its derivatives, are called Cauchy (initial) conditions.

o It can be shown that Cauchy initial conditions are necessary and
sufficient for the existence and uniqueness of solutions.

o (This is typical of those problems that are classified as hyperbolic —
Cauchy conditions are enough to guarantee existence and uniqueness of
solutions).
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The Wave Equation:

@ In terms of the Euler PDE
a Uxx+2h UXy+b Uyy:O

the wave equation corresponds to
a—1l h—=0 b———
c

with the notational change y — t.
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The Wave Equation:

@ Without further calculation we can use the analysis of the Euler PDE
to immediately write down the general solution of the wave equation:

U(x, t) = f(x — ct) + g(x + ct)

This is d"Alembert’s solution, and I'll have considerably more to say
about it later.
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The Heat or Diffusion equation

(Typical of a parabolic PDE).

Ut =0 UXX-

@ Here o is a constant, called the thermal diffusivity (heat equation) or
simply the diffusion constant.

Such an equation often occurs in situations where diffusion occurs.

For example, consider a heated bar of metal:

U(x, t) is the temperature at time t at a point x along the bar.
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The Heat Equation:

@ You might be given:

o Ohe initial distribution of temperature in the bar, U(x,0).
o Or, you might be told that the two ends of the bar are kept a fixed
temperatures,

U(O, f) =T
U(L7 t) =T,

where L is the length of the bar.
Then again you might be told:

o The initial distribution of temperature in the bar, U(x, 0).
e Or, you might be told that the ends are insulated, so that no heat can
pass through them:

Ux(0,t) = 0= U(L,t) forall t.
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The Heat Equation:

o Typically, for parabolic equations, conditions of the type described
above will guarantee the existence and uniqueness of a solution.

@ In terms of the generalized Euler PDE
aUu+2hUy+bUy+clUc+dU,+elU+Ff=0
the heat equation corresponds to
a—o, h—=0 b—0;

c—0 d—-1, e—0 f—0

with the notational change y — t.
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The Heat Equation:

@ There is no closed-form general solution in terms of algebraic
combinations of arbitrary functions.

@ But we will later in the course use Fourier transforms to give a
general solution in terms of an infinite series of “basis functions”.
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The Heat Equation:

Hint:

Both
u(x, t) = cos(kx) exp(—ck>t)

and
u(x, t) = sin(kx) exp(—ck’t)

solve the heat equation for arbitrary values of k.

Then consider:
u(x, t) = / A(k) cos(kx) exp(—ak?t) dk + / B(k) sin(kx) exp(—ck?t) dk

There are two arbitrary functions, but now “hidden” inside the integrals...
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The Laplace equation

(Typical of an elliptic PDE).

UXX + Uyy = 0

e Now U(x, y) represents, for example,
o the electrostatic potential at the point (x,y) in a piece R of dielectric
medium,
o or the Newtonian gravitational potential in empty space (outside the
sources),
o or it might represent the equilibrium temperature at the point (x,y)
inside a heated solid R.
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The Laplace Equation:

@ Typically, in problems involving Laplace’s equation, boundary
conditions of the following form are known:

@ You might be given the potential (temperature) on the boundary
B = OR of the region R:

U(x,y) is given on B.

Such a condition is called a Dirichlet condition.
@ You might know the flux of U, (that is, the gradient of U normal to
the boundary B), into the region R :

ou
— isgi B.
5, S gvenon
Such a condition is called a Neumann condition.
© Frequently, you might be given a mixture of Dirichlet and Neumann
conditions. (Robin boundary conditions.)
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The Laplace Equation:

@ So long as the boundary shape B is “reasonable”,
you can be sure there will be a unique solution to
Laplace's equation satisfying any of these
boundary conditions.

@ In terms of the Euler PDE
aUx+2hlUy+bU, =0
the Laplace equation corresponds to

a—1 h—0 b—1.
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The Laplace Equation:

@ Without further calculation we can use the analysis of the Euler PDE
to immediately write down the general solution of Laplace’s equation:

Ulx,y) = f(x +iy) + g(x —iy)

@ This is Laplace's solution, which relates the solution of the Laplace
PDE to the theory of functions of a complex variable.

o I'll also have more to say about this later.
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Review: Elliptic/ Parabolic/ Hyperbolic

Euler PDE versus Laplace PDE:

When is the Euler differential equation elliptic?

When is the Euler differential equation qualitatively similar to Laplace’s
equation?

When is it qualitatively different?

Euler PDE versus Wave PDE:

When is the Euler differential equation hyperbolic?

When is the Euler differential equation qualitatively similar to the wave
equation?

When is it qualitatively different?
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Review: Elliptic/ Parabolic/ Hyperbolic

d’Alembert’s solution
What is the general solution of the wave equation

Utt = C2 Uxx
in terms of two arbitrary functions?

Laplace’s solution.
What is the general solution of Laplace’s equation

Uxx+ Uyy :O

in terms of two arbitrary functions?
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Other standard Euler PDEs

Additional examples of PDEs of the generalized constant-coefficient Euler
class are:

o Klein—Gordon equation:
2 2 2
Otp — V7o =-—m"¢
o This generalizes the wave equation.
o In particle physics, suitable for a scalar particle with mass.

(For example, the Higgs particle after spontaneous symmetry breaking.
Keep your eye on the LHC in France/ Switzerland for details... )
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Other standard Euler PDEs

o Klein—Gordon equation:
o Also used in plasma physics, where it is useful for describing
screening effects. (m <— Debye screening length.)
e Also used in super-conductivity — m is then related to the
London flux penetration depth.
o Also useful for a string in a valley.

@ In terms of the generalized Euler PDE
aUu+2hUy+bUy+clUc+dU,+eU+Ff=0
the Klein—Gordon equation corresponds to
a—1, h—0 b— -1,
c—=0;, d—=0;, e—=m* f—=0

with the notational change x — t, y — x.
@ There is a natural generalization from (1+1) to (2+1) and (3+1)
dimensions.
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Other standard Euler PDEs

@ Helmholtz equation:

V2p = m*o.

Generalizes Laplace's equation.

o Often results from the wave equation after “separation of variables”
— lots more on this later!

o Also used in early nuclear physics — the pion potential:

6= ——exp(:’"r); F= -V = —exp(—mr) - o

o Note modification of “inverse square” law.
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Other standard Euler PDEs

@ In terms of the generalized Euler PDE
aUu+2hUy+bUy+clUc+dU,+elU+Ff=0
the Helmholtz equation corresponds to
a—1l h—0 b—1;

c—0; d—0; e—>m2; f — 0.

@ There is a natural generalization to three space dimensions.
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Other standard Euler PDEs

e Maxwell equations (source free):

V-E=0
curlB—0:E =0
V-B=0

curlE+0;:B=0

@ These PDEs link the space and time dependence of electric and
magnetic fields.

o (Thankfully they are linear PDEs, which is why we can do such a lot
with them.)

@ These equations are very well understood and underly much of
humanity's pre-quantum technology.
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Other standard Euler PDEs

@ The Maxwell equations can be put into the form of a system
of Euler PDEs, with electric fields coupled to magnetic fields.

o For a small challenge, use the rules of vector calculus to derive wave
equations for E and B:

D?E—V2’E=0

9B —-V?’B=0

o Note that for simplicity | have adopted units where the speed of light
equals unity.
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By now | hope you are convinced of the central importance of the Euler
PDE, both in its original form and in the generalized constant-coefficient
case.

(And later on we'll see even more generalizations.)

_%S_
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