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Fourier Series: VUW

Fourier Series
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Fourier series:

Based on the example we used to describe the SOV principle, we found
strong reasons for suspecting that relatively general functions f (x) should
be representable as sums of sines and cosines:

f (x) =
∞∑
n=0

[An cos(πnx/L) + Bn sin(πnx/L)]

In this chapter we will ask (and answer) how general this sort of
decomposition is, and how to calculate the coefficients An and Bn.
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Fourier coefficients:

As it turns out, calculating the coefficients is easy:

Suppose we have a function f (x) defined on the interval (0, L),
and suppose that in that interval it is described by a Fourier series

f (x) =
∞∑
n=0

[An cos(πnx/L) + Bn sin(πnx/L)]

which we shall (for now) simply assume converges,
(at least “almost everywhere”, in some point-wise sense).
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Fourier coefficients:

Warning

There is nothing sacred about the use of the interval [0, L].
Any interval [a, b] could be used as long as you are willing to translate
and rescale the domain of the function.
You could, for instance always choose to work on the domain [0, 1].
Working on [0, L] is a compromise between complete generality and
obtaining tractable equations.

Note that the Fourier sum is automatically periodic under x → x + 2L,
even if the original function f (x) is undefined outside of this range.

f (x) =
∞∑
n=0

[An cos(πnx/L) + Bn sin(πnx/L)]
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Fourier coefficients:

Now consider the four integrals:

∫ +L

−L
cos(πnx/L) cos(πmx/L) dx = L (δmn + δm0 δn0)

∫ +L

−L
sin(πnx/L) sin(πmx/L) dx = L (δmn − δm0 δn0)

∫ +L

−L
sin(πnx/L) cos(πmx/L) dx = 0

∫ +L

−L
cos(πnx/L) sin(πmx/L) dx = 0

δmn =

{
1 if m = n;

0 if m 6= n.
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Fourier coefficients:

Proof: Part 1 of 4.

For example, suppose to start with that both n+m and n−m are nonzero.
Then, taking x = L z , so dx = L dz , we have∫ +L

−L
cos(πnx/L) cos(πmx/L) dx = L

∫ +1

−1
cos(πnz) cos(πmz) dz

=
L

2

∫ +1

−1
{cos(π[n + m]z) + cos(π[n −m]z)} dz

=
L

2

1

π

{
1

n + m
sin(π[n + m]z)|+1

−1 +
1

n −m
sin(π[n −m]z)|+1

−1

}
= 0.

Thus this integral is definitely zero if both n + m and n −m are nonzero.
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Fourier coefficients:

Proof: Part 2 of 4.

If n + m = 0 but n −m 6= 0, (i.e., n = −m 6= 0), then∫ +L

−L
cos(πnx/L) cos(πmx/L) dx = L

∫ +1

−1
cos(πnz) cos(πmz) dz

= L

∫ +1

−1
cos2(πnz) dz

= L× 2× 1

2
= L
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Fourier coefficients:

Proof: Part 3 of 4.

Similarly if n −m = 0 but n + m 6= 0, (i.e., n = m 6= 0), then∫ +L

−L
cos(πnx/L) cos(πmx/L) dx = L

∫ +1

−1
cos(πnz) cos(πmz) dz

= L

∫ +1

−1
cos2(πnz) dz

= L× 2× 1

2
= L
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Fourier coefficients:

Proof: Part 4 of 4.

Finally if n = m = 0∫ +L

−L
cos(πnx/L) cos(πmx/L) dx =

∫ +L

−L
1 dx

= 2L
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Fourier coefficients:

Proof.

Collecting these results∫ +L

−L
cos(πnx/L) cos(πmx/L) dx = L (δmn + δm0 δn0)

The other three integrals are just minor variations on this theme.

Exercise

Check the other three integrals.
In particular, we easily see∫ +L

−L
sin(πnx/L) sin(πmx/L) dx = L (δmn − δm0 δn0)

The last two integrals are trivial.
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Fourier coefficients:

Proof: sin− sin integral.

For example, suppose to start with that both n+m and n−m are nonzero.
Then∫ +L

−L
sin(πnx/L) sin(πmx/L) dx = L

∫ +1

−1
sin(πnz) sin(πmz) dz

=
L

2

∫ +1

−1
{− cos(π[n + m]z) + cos(π[n −m]z)} dz

=
L

2

2

π

{
− 1

n + m
sin(π[n + m]z)|+1

−1 +
1

n −m
sin(π[n −m]z)|+1

−1

}
= 0.

Thus this integral is definitely zero if both n + m and n −m are nonzero.
Other sub-cases obvious...
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Fourier coefficients:

Proof: sin− cos and cos− sin integrals.∫ +L

−L
sin(πnx/L) cos(πmx/L) dx = 0

∫ +L

−L
cos(πnx/L) sin(πmx/L) dx = 0

Why are these two integrals obvious?
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Fourier coefficients:

So now we play a trick.
Take f (x) to be defined in x ∈ (0, L) and extend it, in an arbitrary way,
to a function f̂ (x) defined on x ∈ [−L,+L].

Warning

There is again nothing sacred about the use of the interval [−L, L].

Any interval [a, b] could be used, as long as you are willing to translate
and rescale the domain of the function.

You could, for instance, always choose to work on the domain [−1, 1].

Working on [−L, L] is a compromise between complete generality and
obtaining tractable equations.
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Fourier coefficients:

Assume that f̂ (x), defined on [−L, L], possesses a Fourier series

f̂ (x) =
∞∑
n=0

[An cos(πnx/L) + Bn sin(πnx/L)]

Now multiply both sides of this equation by cos(πmx/L) and integrate
from −L to +L.∫ +L

−L
cos(πmx/L) f̂ (x) dx =

∞∑
n=0

[An L (δmn + δm0 δn0)]
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Fourier coefficients:

Then the sum over n is easily done and

A0 =
1

2L

∫ +L

−L
f̂ (x) dx .

An 6=0 =
1

L

∫ +L

−L
cos(πnx/L) f̂ (x) dx .
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Fourier coefficients:

Similarly, if we multiply both sides of this equation by sin(πmx/L),
and integrate from −L to +L we have∫ +L

−L
sin(πmx/L) f̂ (x) dx =

∞∑
n=0

[Bn L (δmn − δm0 δn0)]

Then, summing over n, we have

B0 = 0.

Bn 6=0 =
1

L

∫ +L

−L
sin(πnx/L) f̂ (x) dx .
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Fourier coefficients:

Currently, these formulae have been derived under the assumption that the
series converges.

That is, so far, we simply assume that

f̂ (x) =
∞∑
n=0

[An cos(πnx/L) + Bn sin(πnx/L)] ,

with f̂ (x) defined on [−L,+L], makes sense!
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Fourier coefficients:

Summary:

f̂ (x) =
∞∑
n=0

[An cos(πnx/L) + Bn sin(πnx/L)] ,

A0 =
1

2L

∫ +L

−L
f̂ (x) dx .

An 6=0 =
1

L

∫ +L

−L
cos(πnx/L) f̂ (x) dx .

B0 = 0.

Bn 6=0 =
1

L

∫ +L

−L
sin(πnx/L) f̂ (x) dx .
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Fourier coefficients:

Remarks:

These formulae for the coefficients are called the Euler–Fourier
formulae.

(Or sometimes just the Euler formulae — Euler did a tremendous
amount of research on PDEs.)

The above shows how to find Am and Bm given that f (x) is extended
in some arbitrary way to f̂ (x), and given that f̂ (x) can be written as
an infinite Fourier series.

It does not (yet) follow that, if you were to calculate the Am and Bm

by this prescription, and put these values of Am and Bm back into the
series, that the resulting series would always converge to f (x).

(In fact it does not always converge; at best it is convergent “almost
everywhere”.)
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Fourier coefficients:

There is a large degree of arbitrariness in the prescription — f (x) can
be extended to f̂ (x) in an arbitrary way and we still seem to get a
sensible Fourier series?

What on earth is going on here?

[Explanation below.]

A necessary condition for the Fourier series to exist is that the Fourier
coefficients be well defined, which in turn requires (at the very least),
that f̂ (x) be integrable.

Eg, remember various first year courses: at least for a finite number of
finite discontinuities in f̂ (x) the existence of the An and Bn is safe...

Now let’s try for some sufficient conditions.
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Fourier series:

Definition (Piecewise Continuity)

A function f (x) is piecewise continuous on the interval a < x < b if the
interval can be partitioned into a finite number of sub-intervals by using
the points

a = x0 < x1 < x2 < ... < xn = b

in such a way that:

f (x) is continuous on each of the open subintervals (xi , xi+1).

f (x) approaches a finite limit as the endpoints of each subinterval are
approached from within the subinterval.

That is, if

f (x+i ) = lim
h→0+

f (xi + h) and f (x−i ) = lim
h→0−

f (xi + h)

both exist and are finite for all i = 0, 1, 2, . . . n.
Catchphrase: “At worst a finite number of finite discontinuities...”
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Fourier coefficients:

Theorem (Fourier’s general theorem:)

Suppose that the functions f̂ (x) and f̂ ′(x) are both piecewise continuous
on the interval −L ≤ 0 ≤ L, then:

f̂ (x) has a Fourier series whose coefficients are determined by the
Euler–Fourier formulae above.

The Fourier series converges to f̂ (x) at all points where f̂ (x) is
continuous.

The Fourier series converges to 1
2 [f̂ (x+) + f̂ (x−)] at points of

discontinuity.

Matt Visser (VUW) Math 301 — PDEs — 2024 26 / 62



Fourier coefficients:

Remarks:

The conditions of this theorem are certainly sufficient for the
convergence of the Fourier series.

They are not necessary.

Further, they are not even the most general sufficient conditions.

As far as I can tell, nobody knows the (minimal) necessary and
sufficient conditions for the Fourier series to converge to the function
almost everywhere.

That is, we know some necessary conditions, and we know some
sufficient conditions, but as far as I can tell no-one knows the
(minimal) necessary and sufficient conditions for convergence.
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Fourier coefficients:

Proof.

Convergence of the Fourier series:

We here reproduce Kreyszig’s (simplified) proof of convergence for the
Fourier series for (particularly simple) functions f̂ (x) which are continuous,
have continuous second derivatives, and which are periodic with period 2L.

This convergence theorem is useful because of its simplicity, and because it
illustrates the use of convergence theorems you should already have seen.
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Fourier coefficients:

Proof (continued).

The more general case enunciated above, (for piecewise continuous
functions), and the proof that it actually converges to the values stated,
requires more analysis than we have done.

Note that under the simplified conditions of Kreyszig’s simplified theorem,

f̂ (−L) = f̂ (L) and f̂ ′(−L) = f̂ ′(L).
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Fourier coefficients:

Proof (continued).

Integrating the Euler–Fourier formulae (for n 6= 0) by parts we find that

An =
1

L

∫ +L

−L
cos(πnx/L) f̂ (x) dx

=
f̂ (x) sin(πnx/L)

nπ

∣∣∣∣∣
+L

−L

− 1

nπ

∫ +L

−L
sin(πnx/L) f̂ ′(x) dx

= − 1

nπ

∫ +L

−L
sin(πnx/L) f̂ ′(x) dx

(The contributions from upper and lower limits vanish because the sine
function is zero there.)
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Fourier coefficients:

Proof (continued).

Now integrate by parts a second time

An =
f̂ ′(x) cos(πnx/L)

nπ (nπ/L)

∣∣∣∣∣
+L

−L

− 1

nπ (nπ/L)

∫ +L

−L
cos(πnx/L) f̂ ′′(x) dx

= − L

n2π2

∫ +L

−L
cos(πnx/L) f̂ ′′(x) dx

(The contributions from upper and lower limits now cancel because the
derivative is assumed to be periodic.)
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Fourier coefficients:

Proof (continued).

But now, because f̂ (x) by assumption has a continuous second derivative
on [−L,+L], it must be bounded

|f̂ ′′(x)| < M

Therefore

|An| <
L

n2π2

∫ L

−L
| cos(πnx/L) f̂ ′′(x)| dx < L

n2π2

∫ L

−L
M dx <

2ML2

n2π2
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Fourier coefficients:

Proof (continued).

Similarly, we can bound the Bn for all n (just repeat the analogous steps)

|Bn| <
2ML2

n2π2

But then

|Fourier series| < |A0|+
4ML2

π2

(
1 +

1

22
+

1

32
+

1

42
. . .

)
And this series definitely does converge.
Therefore the Fourier series converges.
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Fourier coefficients:

It is a standard result (the Basel problem, solved by Euler) that

1 +
1

22
+

1

32
+

1

42
· · · = ζ(2) =

π2

6

(For the dedicated)
In fact by the Weierstrass test the Fourier series converges uniformly;
which ultimately justifies the way we have cavalierly interchanged
summations and integrations.

(For the dedicated)
A considerably more subtle proof is needed if you want to get away
with piecewise continuity as your only input assumption.

Note:

|Fourier series| < |A0|+
2ML2

3
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Fourier coefficients:

Periodicity:

Since sin(πx/L) and cos(πx/L) are functions which are periodic with
period 2L, it follows that the Fourier series are themselves functions
which are periodic with period 2L.

Thus, unless the function f̂ (x) has the same period, the Fourier series
and the function it is obtained from can only agree on the original
interval.

On the other hand, if f̂ (x) has period 2L then the series and the
function agree (almost) everywhere.
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Fourier coefficients:

References:

Advanced Calculus, pp 321 ff.

Kreyszig, E. Advanced Engineering Mathematics, pp 581 ff.

In fact, any text on Engineering Mathematics will
probably have a discussion of Fourier series.
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Fourier sine series:

Using the freedom of the extension process:

Now we are going to use the freedom of the extension process

f : [0, L]→ f̂ : [−L, L]

to see if we can come up with simpler versions of the Fourier series.

Suppose we construct f̂ (x) so that it is odd in the interval [−L, L].

That is:

f̂ (x) = f (x) for x ∈ (0, L)

f̂ (x) = −f (−x) for x ∈ (−L, 0)
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Fourier coefficients:

Then in the Euler–Fourier formulae all the coefficients An are zero,
and so we have

f (x) =
∞∑
n=1

[Bn sin(πnx/L)]

Here

Bn =
1

L

∫ +L

−L
sin(πnx/L) f̂ (x) dx =

2

L

∫ L

0
sin(πnx/L) f (x) dx

But then we can use the general Fourier theorem to obtain the more
specific result below:
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Fourier coefficients:

Theorem (Fourier sine theorem)

If f (x) is piecewise continuous, with piecewise continuous derivatives,
then the Fourier sine series above converges for all values of x in the
interval [0, L].
Furthermore:

i. If x is a point in (0, L) where f (x) is continuous,
then the series converges to f (x).

ii. If x is a point in (0, L) where f has a discontinuity,
then the series converges to

[f (x+) + f (x−)]/2.

iii. At the points x = 0 and x = L, the series converges to y = 0.
[Not to f (0) and f (L).]
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Fourier coefficients:

Proof.

The proof of the full theorem requires much more analysis than we have
developed.

However, there is a proof of convergence given in Kreyszig,
for C 2 functions which are periodic with period 2L,
which is relatively straightforward.

We have reproduced it above for the full Fourier series case;
and nothing extra is required for the Fourier sine theorem.
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Fourier cosine series:

Using the freedom of the extension process:

As for the sine series:

Suppose we construct f̂ (x) so that it is even in the interval [−L, L].

That is:

f̂ (x) = f (x) for x ∈ (0, L)

f̂ (x) = +f (−x) for x ∈ (−L, 0)
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Fourier cosine series:

Then in the Euler–Fourier formulae all the coefficients Bn are zero,
and so we have

f (x) =
∞∑
n=0

[An cos(πnx/L)]

with

An =
1

L

∫ L

−L
cos(πnx/L) f̂ (x) dx =

2

L

∫ L

0
cos(πnx/L) f (x) dx

A0 =
1

2L

∫ L

−L
f̂ (x) dx =

1

L

∫ L

0
f (x) dx .
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Fourier cosine series:

Theorem (Fourier cosine theorem)

If f (x) is piecewise continuous, with piecewise continuous derivatives,
then the Fourier cosine series above converges for all values of x in the
interval [0, L].

Furthermore:

i. If x is a point in (0, L) where f (x) is continuous,
then the series converges to f (x).

ii. If x is a point in (0, L) where f has a discontinuity,
then the series converges to

[f (x+) + f (x−)]/2.

iii. At the points x = 0 and x = L, the series converges to f (0) and f (L)
respectively.
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Fourier cosine series:

Proof.

Again, as for the sine functions.

Note the full Fourier theorem is applied to f̂ (x) in the interval [−L, L];
whereas the Fourier cosine theorem tells you about f (x) in the interval
[0, L].

Many other results concerning the convergence of Fourier series are
known, ranging from the moderately simple result that the series
converges at x if f (x) is differentiable at x , to Lennart Carleson’s much
more sophisticated 1966 result that the Fourier series of an L2
(square-integrable) function actually converges almost everywhere.
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Fourier cosine series:

Important Note:
In the case of the Fourier cosine series, it is common (but not universal)
practice to write the series as

f (x) =
Ā0

2
+
∞∑
n=1

[
Ān cos(πnx/L)

]
with

Ān =
2

L

∫ L

0
cos(πnx/L) f (x) dx

where the same formula now holds for all n = 0, 1, 2, 3, . . .

This has the effect of simplifying the Euler formulae for the coefficients at
the cost of putting an explicit 2 in the contribution of the n = 0 mode to
the Fourier series.
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Fourier cosine series:

Personally, if I were to bother doing this at all, I’d go one step further and
define

f (x) =
∞∑

n=−∞
an cos(πnx/L),

with

an =
1

L

∫ L

0
cos(πnx/L) f (x) dx ,

so that
a−n = a+n.

This gets rid of the explicit occurrence of the 2, completely.

There’s no explicit 2’s anywhere in either the Euler formula or the Fourier
series — of course the 2 is now hiding implicitly in the fact that the
summation runs from −∞ to +∞.
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Fourier coefficients for L2 (square-integrable) functions:

Lemma

If f̂ (x) is an L2 function then the An and Bn exist and are finite.

Proof (somewhat formal):

Define

〈f , g〉 =

∫ +L

−L
f (x) g(x) dx

This is an “inner product” (“dot product”) on function space.
In particular the Cauchy–Schwartz inequality is satisfied

|〈f , g〉| ≤
√
〈f , f 〉 〈g , g〉

That is ∣∣∣∣∫ +L

−L
f (x) g(x) dx

∣∣∣∣ ≤
√∫ +L

−L
f (x)2 dx

∫ +L

−L
g(x)2 dx
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Fourier coefficients for L2 (square-integrable) functions:

(continued...)

Up to irrelevant factors

An = 〈f̂ , cos(nπx/L)〉; Bn = 〈f̂ , sin(nπx/L)〉.

By the Cauchy–Schwartz inequality

|An| ≤
√
〈f̂ , f̂ 〉 〈cos(nπx/L), cos(nπx/L)〉 ;

|Bn| ≤
√
〈f̂ , f̂ 〉 〈sin(nπx/L), sin(nπx/L)〉 .

So

|An| ≤
√
〈f̂ , f̂ 〉; |Bn| ≤

√
〈f̂ , f̂ 〉. QED!
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Symmetry:

Since the sin(πx/L) are odd functions, it follows that the sine series is
an odd function.

Therefore, expressing f (x) as a sine series can only be true for the
interval [0, L], unless of course f (x) is itself odd, in which case the
sine series agrees with f (x) over the entire interval [−L, L].

On the other hand, the cos(πx/L) are even functions, so a cosine
series is an even function.

Therefore, expressing f (x) as a cosine series can only be true for the
interval [0, L], unless of course f (x) is itself even, in which case the
sine series agrees with f (x) over the entire interval [−L, L].
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Symmetry:

If a function f (x) is odd (even) then the full Fourier series for the
function has only sine functions (cosine functions) in it.

Thus we obtain the sine (cosine) series for a function f (x) on [0, L] if
we extend f (x) to the interval [−L, L] as an odd (even) function f̂ (x)
and then take the full Fourier series for it.

For this reason we really only needed to consider the full Fourier series
above!!
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Truncation errors:

Naturally when plotting the Fourier series you will need to truncate.

As you may surmise from the examples above, the error made in a
truncation depends on the point x (for instance, note that near jumps
and sharp points in the function the series fluctuates rapidly and the
error rises).

Nevertheless, if you use the orthogonality properties then you can
estimate the size of the error.
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Examples of Fourier series:

A Fourier sine series for

f (x) =

 x for 0 < x < 1

(2− x) for 1 < x < 2

The coefficients are given by:

Bn =
2

L

∫ L

0

sin(πnx/L) f (x) dx

Hence, since f (x) is piecewise continuous on [0, 2] we can write

f (x) =
∞∑
n=1

[Bn sin(πnx/L)]

The RHS will converge when x = 0 and x = 2 to 0 (which is f (0) or f (2)).

Hence in fact the series converges to f (x) on the whole interval.
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Examples of Fourier series:

The Fourier cosine series for the same function:

The coefficients are given by:

An 6=0 =
2

L

∫ L

0

cos(πnx/L) f (x) dx

A0 =
1

L

∫ L

0

f̂ (x) dx = 1/2.

Hence, since f (x) is piecewise continuous on [0, 2] we can write

f (x) =
∞∑
n=0

[An cos(πnx/L)]

The RHS will converge when x = 0 and x = 2 to 0 (which is f (0) or f (2)).

Hence in fact the series in this case converges to f (x) on the whole interval.
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Some Fourier work:

Recall the Fourier theorems above.

In each of the cases below, find the indicated Fourier series for the
given function, and, on the same diagram on which you have sketched
the function, sketch the first four partial sums (and so watch the
series gradually converge to the function).

a. f (x) = x2 for 0 < x < 1. Find a sine series.

b. f (x) = x2 for 0 < x < 1. Find a cosine series.

c. f (x) = 1 for 0 < x < 1; f (x) = −1 for −1 < x < 0.
Find the full Fourier series.

d. g(x) = sin x for 0 < x < π. Find a Fourier cosine series.

e. h(x) = sin(3πx) for 0 < x < 1. Find a Fourier sine series.

Naturally, Maple will be incredibly helpful for drawing the partial
sums, and doing integrals!!
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Fourier sine and cosine series:

Consider the function f (x) = cos(2x) for x ∈ (0, π).

1 Find a Fourier cosine series for f (x).

2 Find a Fourier sine series for f (x).

The remaining questions illustrate how you must use the cunning and
brilliance honed over years of struggling through Maths courses to solve
the problem.

And your common sense.
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Heat equation using Fourier series:

Boyce and DiPrima, Chapter 10.5, problem 5.
This illustrates how to deal with the case where the end temperatures are
kept fixed, but not at zero degrees.

You should consult the relevant part of Boyce and DiPrima.

Let an aluminium rod of length L be initially at the uniform temperature
of 25C.

Suppose that at time t = 0 the end x = 0 is cooled to 0C while the end
x = L is heated to 60C, and that both ends are thereafter maintained at
those temperatures.

Matt Visser (VUW) Math 301 — PDEs — 2024 56 / 62



Heat equation using Fourier series:

a. Find the temperature distribution in the rod at any time t.
Now assume that L = 20 cm.

b. Use only the first term in the series for the temperature U(x , t) to
find the approximate temperature at x = 5 when t = 30 sec, and
when t = 60 sec.

c. Use the first two terms for the series for U(x , t) to find an
approximate value of U(5, 30).
What is the percentage difference between the one- and the two-
term approximations?
Does the third term in the series have any appreciable effect for this
value of t?

d. Use the first term in the series for U(x , t) to estimate the time that
must elapse before the temperature at x = 5 comes within 1% of its
steady state value.

Matt Visser (VUW) Math 301 — PDEs — 2024 57 / 62



Heat equation:

Boyce and DiPrima, chapter 10.5, problem 10.
Another heat bar problem, this time with a mixture of end conditions.
Find the steady state temperature in a bar that is insulated at the end
x = 0 and held constant at the end x = L.

Question

What does this mean physically?
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Heat equation:

Consider the heat equation

∂tU(t, x) = ∂2xU(t, x)

subject to the boundary conditions

U(t,−L) = 0 = U(t, L)

U(0, x) = f (x) = f (−x)

That is, f (x) is an even function of x .

1 Using separation of variables find a series representation for U(t, x)
that satisfies the boundary conditions at ±L.

2 Then specify the value of the various coefficients in the series on
terms of f (x), the initial data at t = 0.

Matt Visser (VUW) Math 301 — PDEs — 2024 59 / 62



Laplace’s equation:

Boyce and DiPrima, chapter 10.7, problem 6.
This problem requires you to write Laplace’s equation in terms of polar
coordinates, and then solve by separation of variables.
Find the solution u(r , θ) of Laplace’s equation in the circular sector r < a,
0 ≤ θ ≤ π, also satisfying the BC

u(r , 0) = 0

u(r , π) = 0 for 0 < r < a

u(a, θ) = f (θ) for 0 ≤ θ ≤ π

Assume that u is single-valued and bounded in the given region.
In the problem, take

f (θ) = sin2(2θ).

Consider u(r , θ) to be the equilibrium temperature in the sector, when its radial
sides are kept fixed at zero degrees, and the arc is heated according to f (θ).
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Laplace’s equation:

Use Fourier series to solve Laplace’s equation in the square 0 < x , y < 1
satisfying the boundary conditions

U(0, y) = 0

U(1, y) = 10

U(x , 0) = 20

U(x , 1) = 40x(1− x) = f (x)

corresponding to the case of the equilibrium distribution of temperature in
a square of gold with edges kept at temperatures of 0, 10, 20, and f (x)
degrees respectively.
You will find problems 3, 4 of chapter 10.7 of Boyce and DiPrima very
useful, in that they indicate how to deal with the non-zero temperatures.
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End:

——VUW——
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