
MATH432 - 2024 Assignment 1 Solutions Due 5pm Friday 15 March.

Total marks available: 52

Q1. Consider the rank-4 matroid M with the geometric representation given below.
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Give one example of each of the following:

(a) a minimum-sized circuit of M ,

Solution: The smallest circuits in this matroid have size three, so {a, b, d} is a
minimum-sized circuit (amongst several others).

(b) a maximum-sized circuit of M ,

Solution: Since this matroid has rank 4, every set of size 5 is dependent, so circuits
(being minimal dependent sets) have size at most 5 in this matroid. One example
of a circuit with size 5 is {a, b, f, g, i} (to see this, observe that any proper subset is
independent, since any four such points are not coplanar).

(c) a basis of M ,

Solution: Since this matroid has rank 4, we are looking for an independent set of
size four. One example is {a, b, c, g}.

(d) a minimum-sized independent set of M ,

Solution: The smallest independent set of M is the empty set ∅.
(e) a dependent set of M that is not a circuit,

Solution: Here we are looking for a dependent set that properly contains another
dependent set. One example is {a, b, d, e}.

(f) a set X ⊆ E(M) with r(X) = 3 and |X| = 5.

Solution: One solution here is X = {a, b, d, e, f}, or choose X to be any set of five
points that are coplanar (and not collinear, but there are no 5 points on a line). [6]

Q2. Let M be a matroid. We say that x ∈ E(M) is a loop if {x} is a circuit. Let e ∈ E(M).
Prove that the following are equivalent:

(i) e is a loop of M ,

(ii) e is not in any basis of M ,



(iii) e is not in any independent set of M . [6]

Solution: Suppose that e is a loop. Then {e} is a circuit, and in particular {e} is
a dependent set. Let I be an independent set of M . Then any subset of I is also
independent, by (I2). In particular, e /∈ I, for otherwise {e} is independent. This shows
that e is not in any independent set of M , i.e. (i) ⇒ (iii).

Suppose that e is in some basis B of M . Then B is also an independent set of M (since
a basis is a maximal independent set), so e is in an independent set of M . We’ve shown
that the negation of (ii) implies the negation of (iii). Thus the contrapositive holds, that
is, we’ve also shown that (iii) implies (ii).

Finally, suppose e is not in any basis of M . If {e} is independent, then it is contained in
some maximal independent set, contradicting that e is not in any basis. Therefore {e}
is dependent. By (I1), ∅ is independent, so {e} is a minimal dependent set. Thus e is
a loop of M . This shows that (ii) implies (i). It now follows that (i), (ii), and (iii) are
equivalent, as required.

Q3. Let M1 and M2 be matroids on disjoint ground sets E1 and E2, respectively. Let E =
E1∪E2 and I = {I1∪ I2 : I1 ∈ I(M1) and I2 ∈ I(M2)}. Prove that there is a matroid M
on ground set E whose family of independent set is I. (Hint: you may use Theorem 1.7.)

[5]

Solution: By Theorem 1.7, it suffices to prove that I satisfies (I1), (I2), and (I3). Since
M1 and M2 are matroids, we know (using Theorem 1.7 again) that the independent sets
of these matroids I(M1) and I(M2) satisfy (I1), (I2), and (I3); we use this repeatedly
below.

First we show that I satisfies (I1). Since ∅ is an independent set of both M1 and M2, we
have that ∅ ∪ ∅ = ∅ is in I. So (I1) holds for I.
Next, let I ∈ I. Then I = I1 ∪ I2 for some I1 ∈ I(M1) and I2 ∈ I(M2). For any I ′ ⊆ I,
let I ′1 = I ′ ∩ I1 and I ′2 = I ′ ∩ I2. Then I ′ = I ′1 ∪ I ′2, where I ′1 ∈ I(M1) since I ′1 ⊆ I1, and
I ′2 ∈ I(M2), since I ′2 ⊆ I2. Hence I ′ ∈ I, which shows that (I2) holds for I.
Finally, let I, I ′ ∈ I where |I| > |I ′|. We want to show (I3) holds, i.e. there exists an
element e ∈ I − I ′ such that I ′ ∪ e is in I. Since I, I ′ ∈ I, we have I = I1 ∪ I2 and
I ′ = I ′1 ∪ I ′2 for some I1, I

′
1 ∈ I(M1) and I2, I

′
2 ∈ I(M2). As |I| > |I ′|, either |I1| > |I ′1| or

|I2| > |I ′2|. Without loss of generality, we assume |I1| > |I ′1|. Then, since (I3) holds for
I(M1), there exists an element e ∈ I1 − I ′1 such that I ′1 ∪ e ∈ I(M1). Now (I ′1 ∪ e) ∪ I ′2 is
in I, which shows that (I3) does indeed hold.

Q4. Determine if the following statement is true or false: “If C and (C − x) ∪ y are both
circuits in a matroid, where x ∈ C and y /∈ C, then {x, y} is also a circuit.” If true, prove
it; if false, give a counterexample. [3]

Solution: This is false: we give a counterexample. Consider the matroid on the ground
set {x, y, z, w} that is isomorphic to U2,4 (so a subset of {x, y, z, w} is independent if and
only if it has cardinality at most two). Let C be {x, z, w}. Then C and (C − x) ∪ y are
both circuits, but {x, y} is not.



Q5. Let C1, C2, . . . , Ck be pairwise disjoint circuits of a matroid M , where k ≥ 1. Assume
that M has a circuit not equal to any of C1, . . . , Ck. Let xi be an element in Ci, for each
i in {1, . . . , k}. Prove that M has a circuit that does not contain any of x1, . . . , xk. [6]

Solution: Consider all circuits that are not in the collection {C1, . . . , Ck}. There is at
least one such circuit, by hypothesis. Amongst all such circuits, let us choose C so that
|C ∩ {x1, . . . , xk}| is as small as possible. If C does not contain any of x1, . . . , xk then
C is the circuit we desire. Therefore let us assume that C contains xi for some i. Now
C ̸= Ci, by our choice of C. Since xi is in C ∩Ci, we apply circuit exchange, and we find
a circuit C ′ contained in (C ∪Ci)− xi. We ask if C ′ could be equal to one of the circuits
Cj. If so, then j ̸= i, since C ′ does not contain xi. So assume that C ′ = Cj. But any
element of Cj is not contained in Ci, since Ci ∩ Cj = ∅. This means that every element
of Cj is contained in C, since any such element is contained in (C ∪Ci)− xi. This means
that Cj ⊆ C, implying Cj = C. This is a contradiction as C was assumed to be not equal
to any circuit in {C1, . . . , Ck}. Now we know that C ′ is also not equal to any circuit in
{C1, . . . , Ck}. If C ′ contains an element xj ̸= xi, then this element was in C, since xj is
not in Ci because Ci ∩ Cj = ∅. This shows that |C ′ ∩ {x1, . . . , xk}| < |C ∩ {x1, . . . , xk}|,
contradicting our choice of C. Therefore C contains no elements of {x1, . . . , xk} and we
are done.

Q6. Recall that a loop in a matroid is a circuit of size one. A parallel pair in a matroid is a
circuit of size two. A matroid is simple if it has no loops and no parallel pairs.

(a) How many non-isomorphic simple rank-3 matroids are there on six elements? Draw
a geometric representation of each. [6]

Solution: There are 9. One is the uniform matroid U3,6, but there are 8 others, as
drawn below:



(b) Let M be a matroid with rank 3. Prove that M is paving if and only if M is simple.

[3]

Solution: Suppose that M is paving. Then, since r(M) = 3, the circuits of M have
size at least three. Thus M has no circuits of size one or two, that is, M has no
loops and no parallel pairs.

For the converse, suppose that M is simple. Then M has no loops or parallel pairs.
That is,M has no circuits of size one or size two. Since the empty set ∅ is independent
(as the independent sets of M satisfy (I1) by Theorem 1.7), M also has no circuits
of size zero. Thus any circuit of M has size at least three. Hence, as r(M) = 3, the
matroid M is paving.

Q7. Let E be a set, and let I be a family of subsets of E. For a set Y ⊆ E, when we say I
is a maximal subset of Y in I, we mean that I ⊆ Y and I ∈ I, and if I ′ ∈ I for some
I ⊆ I ′ ⊆ Y , then I = I ′.

(a) Let M be a matroid. Show that, for any subset X of E(M), if I and I ′ are maximal
subsets of X in I(M), then |I| = |I ′|. [3]

(b) Suppose that I satisfies I1 and I2, and, for any set X ⊆ E, if I and I ′ are maximal
subsets of X in I, then |I| = |I ′|. Prove that I is the family of independent sets of
a matroid with ground set E. [5]

Solution:



(a) Assume that I and I ′ are maximal subsets ofX in I(M), but that |I| ≠ |I ′|. Without
loss of generality, we can assume that |I| < |I ′|. Then I3 implies that there is an
element, e ∈ I ′ − I, such that I ∪ e is in I(M). But I ′ ⊆ X implies that e ∈ X, and
hence I ∪ e ⊆ X. Moreover, I is a proper subset of I ∪ e. This contradicts the fact
that I is a maximal subset of X in I(M).

(b) Since I satisfies I1 and I2, it suffices to show that I3 holds. Let I1 and I2 be
members of I where |I2| < |I1|. Let X = I1 ∪ I2. Since I1 ∈ I and I1 ⊆ X, there
is a maximal subset of X in I that contains I1. Let this maximal subset be I ′1.
Similarly, let I ′2 be a maximal subset of X in I that contains I2. Then |I ′1| = |I ′2|
by hypothesis, so |I2| < |I1| ≤ |I ′1| = |I ′2|. Therefore there is an element e ∈ I ′2 − I2.
Now I2 ∪ e ⊆ I ′2, so I2 ∪ e ∈ I by I2. Also, e ∈ X − I2, so e ∈ I1 − I2. Therefore I3
holds.

Q8. Recall the following (see Exercise 1.4 or the exercise1 at the end of lecture 2):

Let E be a finite set, and let r be an integer such that 0 < r < |E|. Let
C ′ be a collection of r-element subsets of E such that if C1 and C2 are distinct
members of C ′, then |C1∩C2| < r−1. Let B be the family of r-element subsets
of E that are not in C ′; that is, B = {B ⊆ E : |B| = r and B /∈ C ′}. Then
(E,B) is a matroid.

We say that a matroid M is sparse paving if M is isomorphic to either U0,n or Un,n for
some non-negative integer n, or we can choose some r and C ′ so that M ∼= (E,B).

(a) Prove that a sparse paving matroid is paving.

Solution: Let M be sparse paving. If M is uniform, then the circuits have size at
least r+1 (in fact, precisely r+1), so M is paving. So we may assume that M is not
uniform. Then there exists some integer r such that 0 < r < |E|, and some collection
C ′ of r-element subsets of E such that if C1 and C2 are distinct members of C ′, then
|C1 ∩ C2| < r − 1, and M ∼= (E,B) where B = {B ⊆ E : |B| = r and B /∈ C ′}.
Towards a contradiction, suppose there is a circuit C of M with |C| < r. Then
|C| ≤ r− 1, so we can choose an (r− 1)-element set C ′ such that C ⊆ C ′ ⊆ E. Now
C ′ is a dependent set of M of size r− 1. Moreover, as r < |E|, we have r ≤ |E| − 1,
so |C ′| = r − 1 ≤ |E| − 2. Thus there are distinct elements x, y ∈ E − C ′, so that
C ′ ∪ {x} and C ′ ∪ {y} are distinct r-element sets. As C ′ ∪ {x} and C ′ ∪ {y} contain
C, they are dependent. Since they are r-element subsets of E that are not bases,
C ′∪{x} and C ′∪{y} are members of C ′. But |(C ′∪{x})∩ (C ′∪{y})| = |C ′| = r−1,
a contradiction. Thus every circuit of M has size at least r, so M is paving.

(b) Let J(n, r) denote the simple graph that has r-element subsets of {1, 2, . . . , n} as its
vertices, and two vertices are adjacent if and only if their intersection has cardinality
r − 1. A stable set of a graph is a set of vertices that are pairwise non-adjacent.
Draw J(4, 2), and describe all stable sets of this graph.

Solution:

1The exercise from the lecture was to prove this is indeed a matroid, but for this assignment question you
may assume this without proof.



{1, 2}

{3, 4}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

The empty set is a stable set, any singleton consisting of a single vertex of J(4, 2) is a
stable set, and there are three stable sets consisting of two vertices: {{1, 2}, {3, 4}},
{{1, 4}, {2, 3}}, and {{1, 3}, {2, 4}}.

(c) Describe all rank-2 sparse paving matroids on the ground set {1, 2, 3, 4} (up to
isomorphism) by providing the family of bases for each.

Solution: By (b), up to symmetry there are three different stable sets to consider.
Thus, up to isomorphism, the only rank-2 sparse paving matroids on {1, 2, 3, 4} have
the following families of bases:

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}
{{1, 3}, {1, 4}, {2, 3}, {2, 4}}

(d) Draw geometric representations of each of the matroids from (c). [9]

Solution:
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