MATH432 - 2024 Solutions to some exercises from lectures 1 and 2

Lecture 1, exercise 1: Show that U, , is a matroid.

Recall that for a set E of size n, and an integer r» with 0 < r < n, we defined U, ,, to be the
pair (F,B) with B={B C E: |B| =r}.

Let E(U,,) = {e1,e2,...,e,}. We need to show that B satisfies (B1) and (B2).

For (B1), observe that there is at least one r-element set for any r > 0 (in particular, if r = 0,
then () is such a set). So B # (), and (B1) is satisfied.

It remains to show that (B2) holds. Let By, By € B with z € By — By. Since |B; — By| > 1,
and |Bl — BQ’ = ’BQ — 31’ (as ‘Bly = ’BQD, there exists Y € BQ — Bl' Let Bg = (Bl — f]j) Uy
Then |Bs| = |B1| = r, and Bs C E, so B3 € B as required.

Lecture 2, exercise 1: Let M be a matroid with rank r. Prove that:
M is uniform if and only if every circuit of M has size r + 1.

Let E be the ground set of M, and suppose that M is uniform. Then M = U,, for some
non-negative integer r, where n = |F|. Every subset of E of size r is a basis, by the definition
of a uniform matroid. The independent sets of M are Z = {X C F : X C B for some B € B}
(by the definition of independent sets), so Z = {X C F : |X| < r}. A subset of E(M) is
dependent if it is not a member of Z. So the dependent sets of M are {X C F: |X| > r+ 1}.
In particular, the circuits (i.e. the minimal dependent sets) are precisely the subsets of E of
size r + 1. So every circuit of M has size r + 1.

For the other direction, suppose every circuit of M has size r + 1. We will first show
CM)={CCE:|C|=r+1}

that is, every subset of E with size r + 1 is a circuit. This holds vacuously if |E| = r, so let
|E| < r. Towards a contradiction, suppose X C E with |X| =7+ 1, but X is not a circuit. If
X is dependent, then it is not minimal; that is, it contains a circuit of size at most r, but no
such circuit exists. So X is independent. But then M has an independent set of size r + 1, so
M has a basis of size at least r + 1, contradicting that M has rank r. We deduce that every
subset of E of size r + 1 is a circuit (i.e., a minimal dependent set). Now every subset of F
of size r is a maximal independent set (i.e., a basis). Thus M = U,,, so M is uniform, as
required.

Lecture 2, exercise 2: Let E be a finite set, and let r be an integer with 0 < r < |E|. Let
C’ be a collection of r-element subsets of £ such that if C; and Cy are distinct members of C’,
then |Cy; N Cy| < r —1. Let B be the family of r-element subsets of E that are not in C’; that
is, B={B C E:|B|=rand B ¢ C'}. Prove that (F, B) is a matroid.

We need to prove that B satisfies (B1) and (B2). Towards a contradiction, suppose that B = ().
Then every r-element subset of F is in C’. Since r > 0, we have r—1 > 0. We arbitrarily choose
a subset X of F with |X| =7 —1. Asr < |E|, we have r — 1 < |E| — 2, so there are distinct



elements y,z € E— X. Then X Uy and X Uz arein C’, but (X Uy)N(XUz)| = |X|=r—1,
a contradiction. We deduce that B # (), satisfying (B1).

Now for (B2), suppose that By, By € B and x € B; — By. Note that (since |B;| = |Ba|) we
have |By — By| = |By — Bs| > 1. If |By — By| = 1, then By = (B; — x) Uy. That is, choosing
y as the unique element in By — By, we have (By — z) Uy € B as desired. So (B2) holds when
|By — B1| = 1. Now suppose |By — By| > 2. Then there exist distinct elements e, f € By — By.
Suppose (towards a contradiction) that (B; —z)Ue ¢ B and (B; —z) U f ¢ B. Then, as
|(By —x)Ue| = |(By —x)U f| =r, we have (B; —z)Ue € C' and (B —z)U f € C'. But
|(Bi—xz)Ue) N ((B; —x)U f)| = |B; — x| = r— 1, contradicting that the intersection of two
distinct members of C’ has size smaller than r — 1. From this contradiction, we deduce that at
least one of (B; —x)Ue and (B; —z)U f is in B. So (B2) also holds when | By — B;| > 2. This
completes the proof.



