
MATH432 - 2024 Solutions to some exercises from lectures 1 and 2

Lecture 1, exercise 1: Show that Ur,n is a matroid.

Recall that for a set E of size n, and an integer r with 0 ≤ r ≤ n, we defined Ur,n to be the
pair (E,B) with B = {B ⊆ E : |B| = r}.
Let E(Ur,n) = {e1, e2, . . . , en}. We need to show that B satisfies (B1) and (B2).

For (B1), observe that there is at least one r-element set for any r ≥ 0 (in particular, if r = 0,
then ∅ is such a set). So B ̸= ∅, and (B1) is satisfied.

It remains to show that (B2) holds. Let B1, B2 ∈ B with x ∈ B1 − B2. Since |B1 − B2| ≥ 1,
and |B1 − B2| = |B2 − B1| (as |B1| = |B2|), there exists y ∈ B2 − B1. Let B3 = (B1 − x) ∪ y.
Then |B3| = |B1| = r, and B3 ⊆ E, so B3 ∈ B as required.

Lecture 2, exercise 1: Let M be a matroid with rank r. Prove that:

M is uniform if and only if every circuit of M has size r + 1.

Let E be the ground set of M , and suppose that M is uniform. Then M ∼= Ur,n for some
non-negative integer r, where n = |E|. Every subset of E of size r is a basis, by the definition
of a uniform matroid. The independent sets of M are I = {X ⊆ E : X ⊆ B for some B ∈ B}
(by the definition of independent sets), so I = {X ⊆ E : |X| ≤ r}. A subset of E(M) is
dependent if it is not a member of I. So the dependent sets of M are {X ⊆ E : |X| ≥ r + 1}.
In particular, the circuits (i.e. the minimal dependent sets) are precisely the subsets of E of
size r + 1. So every circuit of M has size r + 1.

For the other direction, suppose every circuit of M has size r + 1. We will first show

C(M) = {C ⊆ E : |C| = r + 1};

that is, every subset of E with size r + 1 is a circuit. This holds vacuously if |E| = r, so let
|E| < r. Towards a contradiction, suppose X ⊆ E with |X| = r + 1, but X is not a circuit. If
X is dependent, then it is not minimal; that is, it contains a circuit of size at most r, but no
such circuit exists. So X is independent. But then M has an independent set of size r + 1, so
M has a basis of size at least r + 1, contradicting that M has rank r. We deduce that every
subset of E of size r + 1 is a circuit (i.e., a minimal dependent set). Now every subset of E
of size r is a maximal independent set (i.e., a basis). Thus M ∼= Ur,n, so M is uniform, as
required.

Lecture 2, exercise 2: Let E be a finite set, and let r be an integer with 0 < r < |E|. Let
C ′ be a collection of r-element subsets of E such that if C1 and C2 are distinct members of C ′,
then |C1 ∩ C2| < r − 1. Let B be the family of r-element subsets of E that are not in C ′; that
is, B = {B ⊆ E : |B| = r and B /∈ C ′}. Prove that (E,B) is a matroid.

We need to prove that B satisfies (B1) and (B2). Towards a contradiction, suppose that B = ∅.
Then every r-element subset of E is in C ′. Since r > 0, we have r−1 ≥ 0. We arbitrarily choose
a subset X of E with |X| = r − 1. As r < |E|, we have r − 1 ≤ |E| − 2, so there are distinct



elements y, z ∈ E −X. Then X ∪ y and X ∪ z are in C ′, but |(X ∪ y)∩ (X ∪ z)| = |X| = r− 1,
a contradiction. We deduce that B ̸= ∅, satisfying (B1).

Now for (B2), suppose that B1, B2 ∈ B and x ∈ B1 − B2. Note that (since |B1| = |B2|) we
have |B2 − B1| = |B1 − B2| ≥ 1. If |B2 − B1| = 1, then B2 = (B1 − x) ∪ y. That is, choosing
y as the unique element in B2 −B1, we have (B1 − x) ∪ y ∈ B as desired. So (B2) holds when
|B2 −B1| = 1. Now suppose |B2 −B1| ≥ 2. Then there exist distinct elements e, f ∈ B2 −B1.
Suppose (towards a contradiction) that (B1 − x) ∪ e /∈ B and (B1 − x) ∪ f /∈ B. Then, as
|(B1 − x) ∪ e| = |(B1 − x) ∪ f | = r, we have (B1 − x) ∪ e ∈ C ′ and (B1 − x) ∪ f ∈ C ′. But∣∣((B1 − x) ∪ e

)
∩
(
(B1 − x) ∪ f

)∣∣ = |B1−x| = r− 1, contradicting that the intersection of two
distinct members of C ′ has size smaller than r− 1. From this contradiction, we deduce that at
least one of (B1 − x)∪ e and (B1 − x)∪ f is in B. So (B2) also holds when |B2 −B1| ≥ 2. This
completes the proof.


