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1 Introduction

Matroids are abstract mathematical objects, like groups and topological
spaces. Groups arise when we consider symmetries. Topologies arise when
we think about continuity. Matroids are the abstract objects that we ar-
rive at when we think about notions of dependence. There are notions of
dependence in many different areas of mathematics, and matroids underlie
many of these various ideas. We will start by thinking about geometric
dependence.

Imagine a finite set of points E, arranged in the Euclidean plane R2 as
shown in Figure 1.
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Figure 1: A collection of points in R2.

We have placed the points f and g next to each other, to indicate that
they are in the same location. (Technically, this means that E is a multiset
of points. We will make multisets formal later.) Let X be a three-element
subset of E. We will say that X is a basis if there is no line of the plane
(that is, a 2-dimensional affine subspace) that contains all the points in X;
otherwise, X is not a basis. The plural of basis is bases. Therefore, in
this example, {b, c, d}, {a, e, h}, and {c, f, i} are bases, whereas {a, c, h},
{e, f, j}, and {f, g, d} are not bases.

Geometric drawings such as in Figure 1 are essential for developing ma-
troid intuition. We will see many examples. There are some important
things we can note straight away:

(i) If three points are not explicitly shown on a line, then we do not assume
them to be collinear. So in Figure 1, you might think that b, c, and
d, are close to being on a line, but because this line is not explicitly
drawn, we take them to be non-collinear.

(ii) We never draw a line that contains only two points. So for example,
we have not drawn the line that contains b and h.
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Exercise 1.1. Show that if B1 and B2 are bases in a geometric diagram
and x is in B1 − B2, then there is some element y ∈ B2 − B1 such that
(B1 − x) ∪ y is a basis.

Remark. Note that if X and Y are sets, then we write X − Y to denote
the set difference {x ∈ X : x /∈ Y }. (Often, this is instead written as X \ Y ,
but in matroid theory X −Y is more common, so we follow that approach.)
It is also standard in matroid theory to write x instead of {x} to denote the
set containing the single element x. ♢

The previous example described the bases in a collection of points in
2-dimensional space. We can extend this idea of bases to other dimensions.
Let E be a finite set of points in R3. Let X be a four-element subset of
E. We say that X is a basis if there is no plane (a 3-dimensional affine
subspace) that contains X; otherwise, X is not a basis. For example, in
Figure 2, {a, b, f, g}, {d, f, g, h}, and {b, c, f, h} are bases. On the other
hand, {a, b, c, d}, {a, b, g, h}, and {e, f, g, h} are not bases.
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Figure 2: A discrete collection of points in R3.

Here are some further important points about geometric diagrams:

(iii) Three points that are on a line, along with any other point not on that
line, lie on a common plane. So for example {a, b, e} lies on a plane
with any other point.

(iv) Any two lines that meet lie in a common plane. The line spanned
by a and c and the line spanned by f and h meet, so those lines are
contained in a common plane. This means that {a, c, f, h} is not a
basis.

In this 3-dimensional context, the property in Exercise 1.1 holds again:
if B1 and B2 are bases, and x ∈ B1−B2, then for some element y ∈ B2−B1,
(B1 − x) ∪ y is a basis.

Finally, let us think about a discrete configuration of points on the real
line R. In this context, we are interested in a subset X of size two. If the two
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points in X have different locations on the line, then X is a basis; otherwise,
X is not a basis. In Figure 3, {a, e} and {b, f} are bases, while {b, c} and
{f, d} are not bases.
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Figure 3: A discrete collection of points in R.

Essentially, a matroid is an abstract structure that captures the property
described in Exercise 1.1. With this motivation in hand, we give our first
definition of matroids.

Definition 1.2. A matroid is a pair (E,B), where E is a finite set, and B
is a family of subsets of E obeying the following axiom:

B1. B is non-empty.

B2. If B1, B2 ∈ B, and x ∈ B1 − B2, then there exists an element y ∈
B2 −B1 such that (B1 − x) ∪ y ∈ B.

Thus we can see matroids as being abstractions of discrete collections of
points in space. The members of B are called bases. We say that E is the
ground set of the matroid (E,B). If M is a matroid, then we write E(M) to
denote the ground set of M , and B(M) to denote its set of bases. Figures 1,
2, and 3 are what we call geometric representations of matroids.

What does this have to do with ‘dependence’? One can think of a basis
as a maximal ‘independent’ set, so a set of points is ‘independent’ if and
only if it is contained in a basis. Many texts on matroid theory choose to
start with the notion of independent sets, and define a matroid using this
notion. This viewpoint is equivalent; we will return to it a bit later on.

Proposition 1.3. Let M be a matroid. The members of B(M) have the
same size.

Proof. Assume that the result is false. Let B1 and B2 be bases such that
|B1| > |B2|, and assume that among all such bases, we have chosen B1

and B2 so that |B1 ∩ B2| is as large as possible. Because B1 is larger
than B2, there is an element, x, in B1 − B2, and hence there is an element
y ∈ B2 −B1 such that B′

1 = (B1 − x)∪ y is in B. Now B′
1 and B2 are bases,

and |B′
1| = |B1| > |B2|, but B′

1 ∩B2 = (B1 ∩B2)∪ y, so this contradicts our
choice of B1 and B2. □
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Uniform matroids. For our first example of a family of matroids, let E
be a finite set of size n, and let r be an integer satisfying 0 ≤ r ≤ n. Let

B = {B ⊆ E : |B| = r}.

It is very easy to check that B is non-empty and satisfies axiom B2. There-
fore (E,B) is a matroid, denoted by Ur,n. Any matroid of this type is known
as a uniform matroid. Figure 4 contains a geometric representation of the
uniform matroid U3,6. This representation works in exactly the same way
as the one in Figure 1: because no line in the plane contains three points in
the collection, every three-element subset is a basis.

Figure 4: A geometric representation of U3,6.

Although the uniform matroids are not complicated, they play an impor-
tant role. The uniform matroid U0,0 is sometimes called the empty matroid.

Isomorphisms. Note that matroids with different ground sets cannot be
equal. So it seems that we have an infinite number of matroids that could
be called Ur,n, corresponding to an infinite number of possible ground sets.
We avoid this problem by introducing the notion of matroid isomorphism.
If M1 = (E1,B1) and M2 = (E2,B2) are matroids, where B1 and B2 are
families that obey B1 and B2, then an isomorphism from M1 to M2 is
a bijection ψ : E1 → E2 such that a subset B ⊆ E1 belongs to B1 if and
only if ψ(B) = {ψ(b) : b ∈ B} belongs to B2. In this case, M1 and M2 are
isomorphic. We denote this by writing M1

∼=M2. So, rather than denoting
a unique matroid, Ur,n denotes an isomorphism class of matroids. We will
often blur the distinction between a matroid and the class of matroids that
are isomorphic to it.

Sparse paving matroids.

Exercise 1.4. Let E be a finite set, and let r be an integer such that 0 <
r < |E|. Let C be a collection of r-element subsets of E such that if C1 and
C2 are distinct members of C, then |C1∩C2| < r− 1. Let B be the family of
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r-element subsets that are not in C. That is, B = {B ⊆ E : |B| = r, B /∈ C}.
Prove that B is the family of bases of a matroid.

Any matroid of the type described in Exercise 1.4 is known as a sparse
paving matroid. In addition, if E is a finite set, and B is either {∅} or E,
then (E,B) is a sparse paving matroid. Note that B = {∅} is not forbidden
by the axiom B1, since B contains exactly one set (the empty set), and
therefore B is not empty.

Exercise 1.5. Verify that every uniform matroid is a sparse paving ma-
troid.

Independent sets, circuits, and rank. As we have mentioned, the def-
inition of a matroid that we started with is not the one most commonly
found at the beginning of a matroid theory textbook. We now pivot to the
other definition.

Definition 1.6. Let M be a matroid. A subset of E(M) is independent in
M if it is a subset of a basis. A set that is not independent is dependent.
We use I(M) to denote the family of independent sets of the matroid M .

Because the bases of M are equicardinal by Proposition 1.3, it follows
that no basis is properly contained in another. Therefore the bases of M
are exactly the maximal independent sets. (Meaning that a subset is a
basis if and only if it is independent, but is not properly contained in any
independent set.)

Assume that E is a finite set, and that I is a collection of subsets of E.
Consider the following conditions on I.

I1. ∅ ∈ I.

I2. If I1 ∈ I, and I2 ⊆ I1, then I2 ∈ I.

I3. If I1 and I2 are in I, and |I2| < |I1|, then there is an element e ∈ I1−I2
such that I2 ∪ e ∈ I.

Property I3 is sometimes called the augmentation or independence ex-
tension axiom.

Theorem 1.7. Let M be a matroid, and let I be its family of independent
sets. Then I satisfies I1, I2, and I3. Conversely, assume that E is a finite
set and I is a family of subsets of E. If I satisfies I1, I2, and I3, then I
is the family of independent sets of a matroid M , and the bases of M are
exactly the maximal members of I.
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Proof. Let M be a matroid on the ground set E. Let B and I be the
families of bases and independent sets of M , respectively. First we show
that I satisfies I1, I2, and I3. By B1, B is non-empty, so M has at least
one basis. The empty set is a subset of this basis, so the empty set is
independent, and hence I1 is satisfied.

Let I ∈ I. Then I is contained in a maximal independent set B. For any
I ′ ⊆ I, we also have I ′ ⊆ B, so I ′ is independent. Hence I2 is also satisfied.

Assume that I3 fails, so there are members, I1 and I2, of I such that
|I2| < |I1|, and I2 ∪ e /∈ I for every element e ∈ I1 − I2. Since I2 belongs to
I, it is contained in some basis B2. Similarly, I1 is contained in a basis B1.
Suppose that B1 and B2 have been chosen so that B1 ∩ B2 is as large as
possible. If there is some element x that is in (I1∩B2)−I2, then x ∈ I1−I2,
and I2 ∪ x belongs to I (since it is a subset of B2). But this contradicts our
assumption that I3 fails. Therefore every element of I1 ∩ B2 belongs to I2,
which means that

I1 −B2 = I1 − I2. (1.1)

Next we assume that there is an element x ∈ B1−(I1∪B2). Then x is in
B1−B2. ByB2, there is an element y ∈ B2−B1 such that (B1−x)∪y belongs
to B. But (B1−x)∪ y contains I1, and it intersects B2 in one more element
than B1 does. Therefore our choice of B1 and B2 is contradicted. This
implies that B1− (I1∪B2) is empty, and this means that B1−B2 = I1−B2.
Equation (1.1) now shows that

B1 −B2 = I1 − I2. (1.2)

Next we assume that there is an element x ∈ B2 − (I2 ∪ B1). Then
x is in B2 − B1, so by B2, there is an element y ∈ B1 − B2 such that
(B2−x)∪ y belongs to B. But I2 ⊆ (B2−x)∪ y, and (B2−x)∪ y intersects
B1 in one more element than B2. This contradicts our choice of B1 and B2,
so B2 − (I2 ∪ B1) is empty. This means that B2 − B1 = I2 − B1. Since
B2 −B1 = I2 −B1 ⊆ I2 − I1, we see that

|B2 −B1| ≤ |I2 − I1|. (1.3)

Now B1 and B2 have the same size by Proposition 1.3, so |B1 − B2| =
|B2 −B1|. By applying Equations (1.2) and (1.3), we see that

|I1 − I2| = |B1 −B2| = |B2 −B1| ≤ |I2 − I1|.

Therefore

|I1| = |I1 ∩ I2|+ |I1 − I2| ≤ |I1 ∩ I2|+ |I2 − I1| = |I2|,
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and we have a contradiction to our original assumption that |I2| < |I1|.
Thus I3 is satisfied, and this completes the first half of the proof.

For the converse, we let E be a finite set, and we let I be a collection of
subsets of E. We assume I satisfies I1, I2, and I3. Let B be the collection
of maximal members of I. Then each B ∈ B is a member of I and, since
I2 holds, every subset of B is also in I. Moreover, if I is in I, then I is a
subset of a maximal member of I, which is to say I is a subset of a member
of B. This demonstrates that the members of I are exactly the subsets of
the members of B. Therefore, if B is the family of bases of a matroid M ,
then I is the family of independent sets of M . Now, to complete the proof
we need only show that B satisfies B1 and B2.

Because the empty set is in I, there is at least one member of I, so
there is at least one maximal member of I. Therefore B is non-empty, so
B1 holds. Next we claim that the members of B have the same cardinality.
Suppose this is not the case, so there are members B1, B2 ∈ B such that
|B2| < |B1|. Since B1 and B2 are members of I, I3 implies that there is an
element e ∈ B1 −B2 such that B2 ∪ e is in I. This contradicts the fact that
B2 is a maximal member of I. This proves that the members of B have the
same cardinality.

Next we prove that B2 holds. Let B1 and B2 be members of B, and let
x be an element in B1 −B2. As |B1| = |B2|, it follows that |B1 − x| < |B2|.
Now B1 is in I, so B1 − x is also in I, by I2. By I3, there is an element
y ∈ B2−(B1−x) such that (B1−x)∪y is in I. Note that y ̸= x, since x /∈ B2

but y ∈ B2. Therefore y is in B2 − B1. Also, |(B1 − x) ∪ y| = |B1|. Since
maximal members of I have the same cardinality, we deduce that (B1−x)∪y
is a maximal member of I, and hence a member of B. Therefore B2 holds.□

From Theorem 1.7 we see that we could have defined a matroid via the
statements I1, I2, and I3 just as easily as via the statements B1 and B2.
From now on we will often not specify which axiom scheme we are using to
define a matroid.

In fact, there are many more axioms schemes that could be used to define
matroids. We will note two of these schemes here.

Definition 1.8. Let M be a matroid. A subset of E(M) is a circuit in M
if it is a minimal dependent set. That is, C ⊆ E(M) is a circuit if it is
dependent and all of its proper subsets are independent. We use C(M) to
denote the family of circuits of the matroid M .

Let M be a matroid with ground set E. Notice that a subset of E is
dependent if and only if it contains a circuit. The bases of M are exactly
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the maximal subsets of E that do not contain any circuit. If {e} is a circuit
of the matroid M , then e is known as a loop. Similarly, a circuit of size two
is known as a parallel pair. A parallel class is a subset P of E such that
every pair of elements in P is a parallel pair, and P is maximal with respect
to this property. When drawing a geometric representation of a matroid, we
place parallel elements adjacent to each other. We place loops in a box to
one side.

Exercise 1.9. Characterise the circuits of uniform and sparse paving ma-
troids.

Exercise 1.10. If C is a circuit of a matroid, then every proper subset of
C is independent. Give an example of a matroid with an independent set
that is not contained in any circuit.

Let E be a finite set, and let C be a family of subsets of E. Consider the
following properties:

C1. ∅ /∈ C.

C2. If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

C3. If C1, C2 are distinct members of C and e ∈ C1∩C2, then (C1∪C2)−e
contains a member of C.

Property C3 is sometimes referred to as the circuit-elimination axiom.

Theorem 1.11. Let M be a matroid, and let C be its family of circuits.
Then C satisfies C1, C2, and C3. Conversely, assume that E is a finite
set and C is a family of subsets of E. If C satisfies C1, C2, and C3, then
it is the collection of circuits of a matroid M , and the independent sets of
M are exactly the subsets of E that do not contain any member of C as a
subset.

Next we state a very useful property of circuits.

Proposition 1.12. Suppose that I is an independent set of a matroid M ,
and that I ∪ e is dependent for some element e ∈ E(M) − I. Then I ∪ e
contains a unique circuit, and this circuit contains e.

Proof. Since I ∪ e is dependent, it certainly contains a circuit. Any circuit
in I ∪ e contains e, for otherwise I contains a circuit, which contradicts the
fact that it is independent. Assume I ∪ e contains two distinct circuits, C1

and C2. Then e ∈ C1 ∩ C2, so C3 tells us that (C1 ∪ C2) − e contains a
circuit. But (C1 ∪ C2)− e is contained in I, so we have a contradiction. □
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We note one more method for axiomatising matroids.

Definition 1.13. Let M be a matroid. The rank function of M is the
function rM that takes any subset X ⊆ E(M) to the number

max{|I| : I ⊆ X, I is independent in M}.

When there is no ambiguity as to the matroid in question, we write r(X)
rather than rM (X).

Equivalently, r(X) is the size of a maximal independent set contained
in X. Notice that a subset of E(M) is independent in M if and only if its
cardinality is equal to its rank. The rank of a matroid, denoted r(M), is
the size of a basis in that matroid. Note that r(M) = r(E(M)). Geometric
representations of rank-2, rank-3, and rank-4 matroids are collections of
points on a line, plane, and in 3-dimensional space, respectively.

Exercise 1.14. Characterise bases, independent sets, and circuits, using
only the rank function.

Exercise 1.15. Let M be a matroid and let X be a subset of E(M). Show
that if I and I ′ are maximal independent subsets of X, then |I| = |I ′|.

Let E be a finite set, and let r be a function taking subsets of E to the
integers. Consider the following properties of r.

R1. 0 ≤ r(X) ≤ |X| for all X ⊆ E.

R2. r(Y ) ≤ r(X) for all X,Y ⊆ E such that Y ⊆ X.

R3. r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ) for all X,Y ⊆ E.

Property R3 is known as submodularity.

Theorem 1.16. Let M be a matroid, and let r be its rank function. Then
r satisfies R1, R2, and R3. Conversely, assume E is a finite set and r is
a function taking subsets of E to integers. If r satisfies R1, R2, and R3,
then it is the rank function of a matroid M , and the independent sets of M
are exactly the subsets, I ⊆ E, satisfying r(I) = |I|.

There are many many other schemes for axiomatising matroids. We will
see some more of them in the future. We will prove Theorems 1.11 and 1.16
in Section 6.
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