8 Connectivity

We start this chapter by discussing a way to construct a matroid from two matroids on disjoint ground sets.

Proposition 8.1. Let M_{1} and M_{2} be matroids with $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\emptyset$. Let \mathcal{I} be

$$
\left\{I_{1} \cup I_{2}: I_{1} \in \mathcal{I}\left(M_{1}\right), \quad I_{2} \in \mathcal{I}\left(M_{2}\right)\right\}
$$

Then \mathcal{I} is the family of independent sets of a matroid on the ground set $E\left(M_{1}\right) \cup E\left(M_{2}\right)$.

Proof. Since $\emptyset \in \mathcal{I}\left(M_{1}\right)$ and $\emptyset \in \mathcal{I}\left(M_{2}\right)$, the union, \emptyset, is a member of \mathcal{I}. Therefore \mathcal{I} obeys I1. Now suppose that $I \in \mathcal{I}$, and that J is a subset of I. Then $I=I_{1} \cup I_{2}$, where $I_{1}=I \cap E\left(M_{1}\right)$ and $I_{2}=I \cap E\left(M_{2}\right)$. Since I is a member of \mathcal{I}, it follows that $I_{1} \in \mathcal{I}\left(M_{1}\right)$ and $I_{2} \in \mathcal{I}\left(M_{2}\right)$. Now $J \cap E\left(M_{1}\right) \subseteq$ I_{1}, so $J \cap E\left(M_{1}\right) \in \mathcal{I}\left(M_{1}\right)$, since $\mathcal{I}\left(M_{1}\right)$ obeys $\mathbf{I} \mathbf{2}$. The same argument shows that $J \cap E\left(M_{2}\right) \in \mathcal{I}\left(M_{2}\right)$. Since $J=\left(J \cap E\left(M_{1}\right)\right) \cup\left(J \cap E\left(M_{2}\right)\right)$, it follows that J is a member of \mathcal{I}. Therefore \mathcal{I} obeys I2. Finally, we suppose that I and J are members of \mathcal{I}, and that $|J|<|I|$. Let $I_{1}=I \cap E\left(M_{1}\right)$ and $I_{2}=I \cap E\left(M_{2}\right)$, and let $J_{1}=J \cap E\left(M_{1}\right)$ and $J_{2}=J \cap E\left(M_{2}\right)$. Then I_{1} and J_{1} are members of $\mathcal{I}\left(M_{1}\right)$ while I_{2} and J_{2} are members of $\mathcal{I}\left(M_{2}\right)$. If $\left|J_{1}\right| \geq\left|I_{1}\right|$ and $\left|J_{2}\right| \geq\left|I_{2}\right|$, then

$$
|J|=\left|J_{1}\right|+\left|J_{2}\right| \geq\left|I_{1}\right|+\left|I_{2}\right|=|I|
$$

which contradicts our assumption. Therefore, by relabelling as necessary, we can assume that $\left|J_{1}\right|<\left|I_{1}\right|$. Hence there is an element $e \in I_{1}-J_{1}$ such that $J_{1} \cup e \in \mathcal{I}\left(M_{1}\right)$. This means that $e \in I-J$, and $J \cup e=\left(J_{1} \cup e\right) \cup J_{2}$ is a member of \mathcal{I}. Therefore \mathcal{I} obeys $\mathbf{I} 3$.

The matroid from Proposition 8.1 is called the 1-sum or direct sum of M_{1} and M_{2}, and is written $M_{1} \oplus_{1} M_{2}$ or $M_{1} \oplus M_{2}$.

Exercise 8.2. Characterise the bases, circuits, and rank function of the direct sum $M_{1} \oplus M_{2}$.

Proposition 8.3. Let M_{1} and M_{2} be matroids with $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\emptyset$. Then

$$
r_{M_{1} \oplus M_{2}}\left(E\left(M_{1}\right)\right)+r_{M_{1} \oplus M_{2}}\left(E\left(M_{2}\right)\right)=r\left(M_{1} \oplus M_{2}\right)
$$

Proof. It is easy to see that a basis of $M_{1} \oplus M_{2}$ is a union of a basis of M_{1} with a basis of M_{2}. Therefore $r\left(M_{1} \oplus M_{2}\right)=r\left(M_{1}\right)+r\left(M_{2}\right)$. It is obvious that $\left(M_{1} \oplus M_{2}\right) \mid E\left(M_{1}\right)=M_{1}$, so $r_{M_{1} \oplus M_{2}}\left(E\left(M_{1}\right)\right)=r_{M_{1}}\left(E\left(M_{1}\right)\right)=r\left(M_{1}\right)$. The same argument shows that $r_{M_{1} \oplus M_{2}}\left(E\left(M_{2}\right)\right)=r\left(M_{2}\right)$. The result follows.

A converse result also holds. Recall that when we say (X, Y) is a partition of the set E, then X and Y are non-empty sets, $X \cap Y=\emptyset$, and $X \cup Y=E$.

Proposition 8.4. Let M be a matroid, and let (X, Y) be a partition of $E(M)$ such that $r(X)+r(Y)=r(M)$. Then $M=(M \mid X) \oplus(M \mid Y)$.

Proof. We will show that $\mathcal{I}(M)=\mathcal{I}((M \mid X) \oplus(M \mid Y))$. First note that if I is an independent set of M, then $I \cap X$ and $I \cap Y$ are independent sets of $M \mid X$ and $M \mid Y$ respectively. Therefore $I=(I \cap X) \cup(I \cap Y)$ is independent in $(M \mid X) \oplus(M \mid Y)$.

Now let I_{X} and I_{Y} be independent sets of $M \mid X$ and $M \mid Y$ respectively, so that $I=I_{X} \cup I_{Y}$ is independent in $(M \mid X) \oplus(M \mid Y)$. Assume, towards a contradiction, that I is dependent in M, so it contains a circuit C. Note that C cannot be contained in I_{X} or I_{Y}, for these are independent in $M \mid X$ and $M \mid Y$ and hence in M. Therefore $C \cap X$ and $C \cap Y$ are both non-empty. Let e be an element of $C \cap X$. Now $C-e$ is independent in M, so it is contained in a basis B of M. Note that e is not in B, for otherwise B contains C. Also, $B \cap X$ and $B \cap Y$ are independent in $M \mid X$ and $M \mid Y$, respectively. If $B \cap X$ is not a basis of $M \mid X$, then $|B \cap X|<r(X)$. This means that

$$
|B \cap Y|=|B|-|B \cap X|>r(M)-r(X)=r(Y) \text {. }
$$

But this is impossible, as $B \cap Y$ is independent in $M \mid Y$. Therefore $B \cap X$ is maximally independent in $M \mid X$. This means that $B \cup e$ contains a circuit C^{\prime} of $M \mid X$, by Proposition 1.12 . Note that C^{\prime} is a circuit of M and $C \neq C^{\prime}$, since C^{\prime} is disjoint from Y, and C is not. Now B is independent in M, and $B \cup e$ is dependent, but $B \cup e$ contains two distinct circuits, C and C^{\prime}. This contradicts Proposition 1.12. Therefore I is independent in M. We have proved that the independent sets of M and $(M \mid X) \oplus(M \mid Y)$ are identical, so $M=(M \mid X) \oplus(M \mid Y)$, as required.

If (X, Y) is any partition of the ground set of a matroid M, then

$$
r(X)+r(Y) \geq r(X \cup Y)+r(X \cap Y)=r(E(M))+r(\emptyset)=r(M),
$$

by the submodularity of the rank function. The last two results show that this inequality is an equality precisely in the case that M can be expressed
as a direct sum of non-empty matroids. This motivates the following definitions.

Definition 8.5. Let M be a matroid. A 1-separation of M is a partition (X, Y) of $E(M)$ such that $r(X)+r(Y)=r(M)$.

Definition 8.6. A matroid is connected if it does not have a 1 -separation.
Propositions 8.3 and 8.4 establish the following result.
Proposition 8.7. A matroid is connected if and only if it cannot be expressed as the direct sum of two non-empty matroids.

Exercise 8.8. Prove that if e is a loop or a coloop of M and $|E(M)| \geq 2$, then $(\{e\}, E(M)-e)$ is a 1 -separation.

Connected components. Recall that the connected components of a graph are defined as the equivalence classes of a particular relation on the vertices (see page 17). We can develop a similar idea for matroids.

Proposition 8.9. Let M be a matroid, and let C_{1} and C_{2} be distinct circuits in M such that $C_{1} \cap C_{2} \neq \emptyset$. If $e \in C_{1}$ and $f \in C_{2}$, then there is a circuit C of M such that $\{e, f\} \subseteq C \subseteq C_{1} \cup C_{2}$.

Proof. Assume the result does not hold. Amongst all circuits C_{1}, C_{2} for which the result fails, choose C_{1} and C_{2} so that $\left|C_{1} \cup C_{2}\right|$ is as small as possible. Now $e \in C_{1}$ and $f \in C_{2}$, but there is no circuit containing $\{e, f\}$ and contained in $C_{1} \cup C_{2}$. Clearly $e \notin C_{2}$ and $f \notin C_{1}$, because otherwise C_{1} or C_{2} is a circuit contained in $C_{1} \cup C_{2}$ that contains both e and f. Let x be an element in $C_{1} \cap C_{2}$. By Proposition 5.13, there is a circuit $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-x$ such that $e \in C_{3}$. Now C_{3} must contain an element $y \in C_{2}-C_{1}$, for otherwise C_{3} is properly contained in C_{1}. We have assumed that no circuit in $C_{1} \cup C_{2}$ contains both e and f. Since $e \in C_{3}$, it follows that f is in $C_{2}-C_{3}$. As $y \in C_{2} \cap C_{3}$, we can apply Proposition 5.13 to C_{2} and C_{3}, and deduce that there is a circuit $C_{4} \subseteq\left(C_{2} \cup C_{3}\right)-y$ such that $f \in C_{4}$. Now $C_{4} \subseteq\left(C_{1} \cup C_{2}\right)-y$. There is at least one element in $C_{1} \cap C_{4}$, for otherwise C_{4} is properly contained in C_{2}. Moreover, $e \in C_{1}$ and $f \in C_{4}$. There cannot be a circuit in $C_{1} \cup C_{4}$ that contains both e and f, for then there would be a circuit in $C_{1} \cup C_{2}$ that contains both e and f. But $\left|C_{1} \cup C_{4}\right|<\left|C_{1} \cup C_{2}\right|$, since $y \notin C_{1} \cup C_{4}$. This contradicts our choice of C_{1} and C_{2}, which completes the proof.

For a matroid M, let \sim be the relation on $E(M)$ such that, for $e, f \in$ $E(M)$, we have $e \sim f$ if either $e=f$, or some circuit of M contains e and f. The next result follows almost immediately from Proposition 8.9.

Corollary 8.10. Let M be a matroid. The relation \sim is an equivalence relation on $E(M)$.

A connected component of M is an equivalence class under \sim.
Proposition 8.11. The matroid M is connected if and only if $E(M)$ is a connected component.

Proof. Let E be the ground set of M. Assume that E is not a connected component, so M has a connected component X such that $X \neq E$. Now every circuit of M is contained in X or $E-X$. Therefore $C \subseteq E$ is a circuit of M if and only if it is a circuit of $M \mid X$ or $M \mid(E-X)$, and it is easy to see this is true if and only if C is a circuit of $(M \mid X) \oplus(M \mid(E-X))$. Therefore $M=(M \mid X) \oplus(M \mid(E-X))$. Proposition 8.3 now shows that M has a 1 -separation, so it is not connected.

For the converse, assume that M is not connected, so it can be expressed as $M=M_{1} \oplus M_{2}$, by Proposition 8.7, where M_{1} and M_{2} are not empty matroids. It is easy to see that no circuit of M can contain elements from $E\left(M_{1}\right)$ and $E\left(M_{2}\right)$, so it is clear that $E(M)$ is not a component.

Exercise 8.12. Prove that the partition (X, Y) is a 1-separation of the matroid M if and only if X and Y are unions of connected components.

Connectivity and graphs. Which graphs correspond to connected graphic matroids? Isolated vertices in a graph have no effect on the corresponding graphic matroid, so we will consider only graphs without isolated vertices. If a graph G contains a loop, then $M(G)$ is connected if and only if G contains no other edge. Therefore we may as well consider loopless graphs.

Let $G=(V, E)$ be a graph, and let v be a vertex of G. Then $G-v$ is the graph

$$
(V-v,\{e \in E: v \notin e\}) .
$$

In other words, $G-v$ is obtained from G by deleting the vertex v, and all the edges incident with it. A vertex v of G is a cut-vertex if $G-v$ has more connected components than G. A graph is 2-connected if it is connected, and has no cut-vertices.

Proposition 8.13. Let G be a loopless graph with no isolated vertices. Then $M(G)$ is connected if and only if G is 2 -connected.

Proof. Assume that $M(G)$ is connected. First, suppose that G is not connected. Let H_{1} and H_{2} be two distinct connected components of G. Since G has no isolated vertices, there are edges e_{1} and e_{2} of $G\left[H_{1}\right]$ and $G\left[H_{2}\right]$ respectively. But clearly no cycle of G can contain both e_{1} and e_{2}. Therefore no circuit of $M(G)$ contains e_{1} and e_{2}, and Proposition 8.11 states that $M(G)$ is not connected, contrary to assumption. Henceforth, we may assume that G is connected.

Suppose that G is not 2 -connected. Then G has a vertex v such that $G-v$ has at least two connected components, H_{1} and H_{2}. Since G is connected, there are paths in G from vertices in H_{1} to vertices in H_{2}. Any such path must go through v, so there are edges e_{1} and e_{2} such that e_{i} joins v to a vertex in H_{i}, for $i=1,2$. Let $e_{i}=\left\{v, u_{i}\right\}$, for $i=1,2$. As $M(G)$ is connected, there is a cycle C of G that contains e_{1} and e_{2}, by Proposition 8.11. Now $C-v$ is a path in $G-v$, and this path connects u_{1} to u_{2}. But u_{1} and u_{2} are in different connected components of $G-v$, so we have a contradiction. Therefore G is 2 -connected. This completes one direction of the proof.

For the converse, assume that G is 2 -connected but $M(G)$ is not connected. Then $E(G)$ is not a connected component of $M(G)$, by Proposition 8.11. Let e_{1} and e_{2} be edges of G that are not contained in a common cycle of G. Note that G has no loops, and let e_{i} be $\left\{u_{i}, v_{i}\right\}$, for $i=1,2$. Let P be a walk joining a vertex in $\left\{u_{1}, v_{1}\right\}$ to a vertex in $\left\{u_{2}, v_{2}\right\}$, and amongst all such walks assume that P has been chosen so that it has the smallest possible number of edges. The walk P exists since G is connected. By relabelling, we can assume that P joins u_{1} to u_{2}. Now neither v_{1} nor v_{2} is contained in P, for otherwise our assumption on the length of P is contradicted. Moreover, P is a path, for the same reason.

Assume that P contains an edge e_{3}. If there were no cycle containing e_{1} and e_{3}, then we would have chosen that pair instead of e_{1} and e_{2}, since e_{1} and e_{3} are joined by a shorter path. Hence there is a cycle C_{1} containing e_{1} and e_{3}. Similarly, the cycle C_{2} contains e_{2} and e_{3}. Since e_{3} is an edge in both C_{1} and C_{2}, Proposition 8.9 implies that there is a circuit of $M(G)$ that contains e_{1} and e_{2}, contrary to our assumption. Therefore P contains no edges, so it is a single vertex, u. This implies $u_{1}=u_{2}=u$ and $e_{i}=\left\{u, v_{i}\right\}$, for $i=1,2$. Note that $G-u$ is connected, since G is 2 -connected. Therefore there is a path from v_{1} to v_{2} in $G-u$. But this path, along with the edges e_{1} and e_{2}, makes a cycle of G that contains e_{1} and e_{2}. This final contradiction
completes the proof.
Higher connectivity. Next we extend our notion of connectivity. Let M be a matroid. Recall that if X and Y are disjoint sets such that $X \cup Y=$ $E(M)$, then $r(X)+r(Y) \geq r(M)$, or equivalently $r(X)+r(Y)-r(M) \geq 0$. Moreover, (X, Y) is a 1-separation if and only if $|X|,|Y| \geq 1$ and $r(X)+$ $r(Y)-r(M)<1$. This inspires the following extension of the definition.

Definition 8.14. Let M be a matroid with ground set E. For $X \subseteq E$, let

$$
\lambda_{M}(X)=r(X)+r(E-X)-r(M) .
$$

We call $\lambda_{M}(X)$ the connectivity function of M.
Definition 8.15. Let k be a positive integer. A k-separation of a matroid M is a partition (X, Y) of $E(M)$ with the property that $|X| \geq k$ and $|Y| \geq k$, and $\lambda_{M}(X)<k$.

Definition 8.16. Let n be an integer that is at least two. A matroid is n-connected if there is no positive integer $k<n$ such that M has a k separation.

Note that, under this definition, a 2-connected matroid is what we have previously called a connected matroid.

Next we explore some of the properties of the connectivity function of a matroid. One of its nice features is that it is invariant under duality. To see this, we first give an equivalent formulation of the connectivity function using the corank of a set.

Lemma 8.17. Let M be a matroid and $X \subseteq E(M)$. Then

$$
\lambda_{M}(X)=r(X)+r^{*}(X)-|X| .
$$

Proof. By Proposition 3.9, we have $r(E-X)=r^{*}(X)-|X|+r(M)$. So

$$
\begin{aligned}
\lambda_{M}(X) & =r(X)+r(E-X)-r(M) \\
& =r(X)+r^{*}(X)-|X|+r(M)-r(M) \\
& =r(X)+r^{*}(X)-|X|,
\end{aligned}
$$

as required.
Corollary 8.18. Let M be a matroid, and $X \subseteq E(M)$. Then

$$
\lambda_{M}(X)=\lambda_{M^{*}}(X)
$$

The next result follows immediately.
Corollary 8.19. A matroid M is n-connected if and only M^{*} is n connected.

Proposition 8.20. Let M be an n-connected matroid with at least $2(n-1)$ elements. Then every circuit of M contains at least n elements.

Proof. Let E be the ground set of M. Suppose M has a circuit C with at most $n-1$ elements. Let $k=|C|$. Then $|E-C| \geq k$, since $k \leq n-1$ and $|E| \geq 2(n-1)$. Moreover $r(C)=k-1$, and $r(E-C) \leq r(M)$. Therefore $\lambda_{M}(C)=r(C)+r(E-C)-r(M)<k$, so $(C, E-C)$ is a k-separation for $k<n$, which contradicts the fact that M is n-connected.

Most of our focus will be on 3-connected matroids. A matroid is simple if every circuit has at least three elements, and is cosimple if its dual is simple. Corollary 8.18 and Proposition 8.20 establish the following fact:

Proposition 8.21. A 3-connected matroid with at least four elements is both simple and cosimple.

Proposition 8.7 characterises connected matroids in terms of 1-sums. We can similarly characterise 3 -connected matroids in terms of a sum operation.

Definition 8.22. Let M_{1} and M_{2} be two matroids satisfying $E\left(M_{1}\right) \cap$ $E\left(M_{2}\right)=\{e\}$, where e is neither a loop nor a coloop in M_{1} or M_{2}. Let $\mathcal{C}_{1}=\mathcal{C}\left(M_{1}\right)$ and $\mathcal{C}_{2}=\mathcal{C}\left(M_{2}\right)$. The 2 -sum of M_{1} and M_{2}, written $M_{1} \oplus_{2} M_{2}$, has $\left(E\left(M_{1}\right) \cup E\left(M_{2}\right)\right)-e$ as its ground set, and

$$
\begin{aligned}
&\left\{C \in \mathcal{C}_{1}: e \notin C\right\} \cup\left\{C \in \mathcal{C}_{2}: e \notin C\right\} \cup \\
&\left\{\left(C_{1} \cup C_{2}\right)-e: C_{1} \in \mathcal{C}_{1}, C_{2} \in \mathcal{C}_{2}, e \in C_{1} \cap C_{2}\right\}
\end{aligned}
$$

as its family of circuits.
Definition 8.23. Let k be a positive integer, and let (X, Y) be a k separation of a matroid M. The separation (X, Y) is exact if $\lambda_{M}(X)=k-1$.

The following theorem is due to Seymour.
Theorem 8.24 (Seymour, 1980). If (X, Y) is an exact 2-separation of the matroid M, then there are matroids M_{1} and M_{2} with ground sets $X \cup e$ and $Y \cup e$ respectively (where e $\notin X \cup Y$) such that $M=M_{1} \oplus_{2} M_{2}$. Conversely, if M_{1} and M_{2} are matroids such that $\left|E\left(M_{1}\right)\right|,\left|E\left(M_{2}\right)\right| \geq 3$, and $E\left(M_{1}\right) \cap$ $E\left(M_{2}\right)=\{e\}$, and e is neither a loop nor a coloop in M_{1} or M_{2}, then ($\left.E\left(M_{1}\right)-e, E\left(M_{2}\right)-e\right)$ is an exact 2-separation of $M_{1} \oplus_{2} M_{2}$.

Corollary 8.25. Suppose that M is a connected matroid. Then M is 3connected if and only if it cannot be expressed in the form $M_{1} \oplus_{2} M_{2}$ such that M_{1} and M_{2} both have at least three elements.

Chain Theorems and Splitter Theorems. Inductive tools for connectivity are very important. The next result is a canonical example of such an inductive tool; it ensures the existence of an element that can be removed while retaining the property of being connected.

Proposition 8.26. Let M be a connected matroid. Then either $M \backslash e$ or M / e is connected, for any element $e \in E(M)$.

Proof. First assume that e is a loop or coloop of M. Since M is connected, this means that $E(M)=\{e\}$. Thus $M \backslash e=M / e$ is the empty matroid, which is connected. So we may assume that e is not a loop or a coloop.

Assume that neither $M \backslash e$ nor M / e is connected. Then there are distinct elements $f, g \in E(M)-e$ such that f and g are not in a common circuit of M / e. Assume that f and g are contained in a connected component of $M \backslash e$. Call this component X. Since $M \backslash e$ is not connected, X is not equal to the ground set of $M \backslash e$. We let Y be $E(M \backslash e)-X$. Then both X and Y are non-empty, and $r_{M \backslash e}(X)+r_{M \backslash e}(Y)=r(M \backslash e)$.

By the definition of a component, there is a circuit C of $M \backslash e$ that contains f and g. Then C cannot be a circuit of M / e, since f and g are not contained in a common circuit of this matroid. Therefore Proposition 5.14 implies that $e \in \operatorname{cl}_{M}(C)$. Since C is a subset of X, it follows that e is also in $\mathrm{cl}_{M}(X)$. Therefore $r_{M}(X \cup e)=r_{M}(X)=r_{M \backslash e}(X)$. We also have $r_{M \backslash e}(Y)=r_{M}(Y)$ and $r(M)=r(M \backslash e)$, as e is not a coloop. Therefore

$$
\begin{aligned}
\lambda_{M}(X \cup e) & =r_{M}(X \cup e)+r_{M}(Y)-r(M) \\
& =r_{M \backslash e}(X)+r_{M \backslash e}(Y)-r(M \backslash e)=0,
\end{aligned}
$$

so M has a 1-separation. This is a contradiction, as M is connected. Therefore f and g are not in the same connected component of $M \backslash e$.

Now, no circuit of $M \backslash e$ contains f and g, but f and g are contained in a circuit C of M, since M is connected. Since C is not a circuit of $M \backslash e$, it follows that $e \in C$. Thus $C-e$ is a circuit of M / e that contains f and g, by Proposition 5.14. This contradiction completes the proof.

The analogue of Proposition 8.26 is not true for 3 -connected matroids, as the next example shows. Let $n \geq 2$ be an integer. The n-spoke wheel (written W_{n}) is a graph on $n+1$ vertices. It is obtained from a cycle with n
vertices by adding a new vertex that is adjacent to every other vertex. We call the graphic matroid $M\left(W_{n}\right)$ the rank-n wheel. Note that the edges in the original cycle of W_{n} form a circuit-hyperplane of $M\left(W_{n}\right)$. The matroid obtained by relaxing this circuit-hyperplane (see page 54) is called the rankn whirl, and is denoted W^{n}. Any wheel or whirl is 3-connected. However, if M is a rank- n wheel or whirl, and e is any element of M, then $M \backslash e$ contains a series pair, and M / e contains a parallel pair. If $n>2$, then Proposition 8.21 implies that $M \backslash e$ and M / e are not 3 -connected, for any element e.

Despite this example, there are still useful inductive results for 3connected matroids. In fact, the next result (known as the Wheels and Whirls Theorem) shows that these matroids are the only ones to exhibit this behaviour.

Theorem 8.27 (Tutte, 1966). Let M be a non-empty 3-connected matroid. If M is not a wheel or a whirl, then there is an element e in $E(M)$ such that either $M \backslash e$ or M / e is 3-connected.

A non-simple matroid M has a canonically associated simple matroid, called the simplification of M. We denote this simplification by $\operatorname{si}(M)$. Informally, $\operatorname{si}(M)$ is obtained by deleting all the loops from M, and then deleting all but one element from every parallel class. More formally, we note that a rank-one flat consists of a parallel class (and the set of all loops). We let the ground set of $\operatorname{si}(M)$ be the set of rank-one flats of M. If $\left\{F_{1}, \ldots, F_{t}\right\}$ is a set of rank-one flats of M, then the rank of $\left\{F_{1}, \ldots, F_{t}\right\}$ in $\operatorname{si}(M)$ is

$$
r_{M}\left(\bigcup_{i=1}^{t} F_{i}\right)
$$

This gives us the rank of any subset of the ground set of $\operatorname{si}(M)$, and therefore completely defines $\operatorname{si}(M)$.

The cosimplification (written $\operatorname{co}(M)$) of M is defined to be $\left(\operatorname{si}\left(M^{*}\right)\right)^{*}$. Thus $\operatorname{co}(M)$ is obtained from M by contracting all coloops, and contracting all but one element from every series class. The next result is known as Bixby's Lemma.

Lemma 8.28 (Bixby, 1982). Let e be an element of the 3-connected matroid M. Then either $\operatorname{co}(M \backslash e)$ or $\operatorname{si}(M / e)$ is 3-connected.

Results such as Proposition 8.26. Theorem 8.27, and Lemma 8.28 are sometimes known as chain theorems, since they let us find a chain of connected matroids, each one obtained from the previous one by deleting or
contracting a single element (and possibly simplifying or cosimplifying). Typically, as we move into higher types of connectivity, it becomes more and more difficult to obtain chain theorems. This is why we often focus on 3-connected matroids: 3-connectivity is strong enough to impose useful structural constraints, but weak enough so that there are good inductive tools. One of the most important of these tools is the Splitter Theorem of Seymour. A proper minor of the matroid N is a minor that is not equal to N.

Definition 8.29. Let \mathcal{M} be a minor-closed class of matroids. A splitter of \mathcal{M} is a matroid $M \in \mathcal{M}$ such that no 3 -connected member of \mathcal{M} contains a proper minor isomorphic to M.
(Note that when we say that \mathcal{M} is a class of matroids, we always mean that \mathcal{M} is closed under isomorphism.) Equivalently, if N is a 3-connected member of \mathcal{M}, and N has a minor isomorphic to M, then N itself is isomorphic to M. Since no member of \mathcal{M} that properly contains M as a minor can be 3 -connected, we might say that M splits the members of \mathcal{M} into non-3-connected matroids. It seems that verifying that M is a splitter for \mathcal{M} could be an infinite task: we might need to examine all the 3-connected members of \mathcal{M} and check that none of them properly contains an isomorphic copy of M as a minor. Seymour's theorem shows us that this is not the case. A single-element extension of a matroid M is a matroid N with the property that there is an element e in $E(N)$ such that $N \backslash e=M$. Dually, a single-element coextension of M is a matroid N with an element $e \in E(N)$ such that $N / e=M$. Now we can state the Splitter Theorem of Seymour. It can be seen as a strengthening of the Wheels and Whirls Theorem.

Theorem 8.30 (Seymour, 1980). Let \mathcal{M} be a class of matroids. Let M be a 3-connected member of \mathcal{M} with at least four elements, such that if M is a wheel or a whirl, then \mathcal{M} contains no wheel or whirl with rank greater than M. Then M is a splitter for \mathcal{M} if and only if there is no 3-connected single-element extension or coextension of M that is contained in \mathcal{M}.

Therefore, to check that M is a splitter for \mathcal{M}, we do not need to check all the 3 -connected members of \mathcal{M}, only the ones that are single-element extensions or coextensions of M. The Splitter Theorem can also be stated in the following way.

Theorem 8.31. Let M and N be 3-connected matroids such that N has a proper minor isomorphic to M. Assume that N has at least four elements,
and if N is a wheel or a whirl, then M does not have any wheel or whirl with rank greater than N as a minor. Then there is an element $e \in E(M)$ such that either $M \backslash e$ or M / e is 3 -connected, and has a minor isomorphic to N.

Thus we can use the Splitter Theorem to construct a chain of 3-connected matroids, each one produced from the previous one by deleting or contracting a single element. In this case, we also have the condition that all the matroids in the chain have a copy of N as a minor.

