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8 Connectivity

We start this chapter by discussing a way to construct a matroid from two
matroids on disjoint ground sets.

Proposition 8.1. Let M1 and M2 be matroids with E(M1) ∩ E(M2) = ∅.
Let I be

{I1 ∪ I2 : I1 ∈ I(M1), I2 ∈ I(M2)}.
Then I is the family of independent sets of a matroid on the ground set
E(M1) ∪ E(M2).

Proof. Since ∅ ∈ I(M1) and ∅ ∈ I(M2), the union, ∅, is a member of I.
Therefore I obeys I1. Now suppose that I ∈ I, and that J is a subset of I.
Then I = I1 ∪ I2, where I1 = I ∩ E(M1) and I2 = I ∩ E(M2). Since I is a
member of I, it follows that I1 ∈ I(M1) and I2 ∈ I(M2). Now J ∩E(M1) ⊆
I1, so J∩E(M1) ∈ I(M1), since I(M1) obeys I2. The same argument shows
that J ∩E(M2) ∈ I(M2). Since J = (J ∩E(M1)) ∪ (J ∩E(M2)), it follows
that J is a member of I. Therefore I obeys I2. Finally, we suppose that
I and J are members of I, and that |J | < |I|. Let I1 = I ∩ E(M1) and
I2 = I ∩ E(M2), and let J1 = J ∩ E(M1) and J2 = J ∩ E(M2). Then I1
and J1 are members of I(M1) while I2 and J2 are members of I(M2). If
|J1| ≥ |I1| and |J2| ≥ |I2|, then

|J | = |J1|+ |J2| ≥ |I1|+ |I2| = |I|

which contradicts our assumption. Therefore, by relabelling as necessary,
we can assume that |J1| < |I1|. Hence there is an element e ∈ I1 − J1 such
that J1 ∪ e ∈ I(M1). This means that e ∈ I − J , and J ∪ e = (J1 ∪ e) ∪ J2
is a member of I. Therefore I obeys I3. □

The matroid from Proposition 8.1 is called the 1-sum or direct sum of
M1 and M2, and is written M1 ⊕1 M2 or M1 ⊕M2.

Exercise 8.2. Characterise the bases, circuits, and rank function of the
direct sum M1 ⊕M2.

Proposition 8.3. Let M1 and M2 be matroids with E(M1) ∩ E(M2) = ∅.
Then

rM1⊕M2(E(M1)) + rM1⊕M2(E(M2)) = r(M1 ⊕M2).
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Proof. It is easy to see that a basis ofM1⊕M2 is a union of a basis ofM1 with
a basis of M2. Therefore r(M1 ⊕M2) = r(M1) + r(M2). It is obvious that
(M1 ⊕M2)|E(M1) =M1, so rM1⊕M2(E(M1)) = rM1(E(M1)) = r(M1). The
same argument shows that rM1⊕M2(E(M2)) = r(M2). The result follows.□

A converse result also holds. Recall that when we say (X,Y ) is a par-
tition of the set E, then X and Y are non-empty sets, X ∩ Y = ∅, and
X ∪ Y = E.

Proposition 8.4. Let M be a matroid, and let (X,Y ) be a partition of
E(M) such that r(X) + r(Y ) = r(M). Then M = (M |X)⊕ (M |Y ).

Proof. We will show that I(M) = I((M |X)⊕ (M |Y )). First note that if I
is an independent set of M , then I ∩X and I ∩ Y are independent sets of
M |X and M |Y respectively. Therefore I = (I ∩X)∪ (I ∩Y ) is independent
in (M |X)⊕ (M |Y ).

Now let IX and IY be independent sets of M |X and M |Y respectively,
so that I = IX ∪ IY is independent in (M |X)⊕ (M |Y ). Assume, towards a
contradiction, that I is dependent inM , so it contains a circuit C. Note that
C cannot be contained in IX or IY , for these are independent in M |X and
M |Y and hence in M . Therefore C ∩X and C ∩Y are both non-empty. Let
e be an element of C∩X. Now C−e is independent inM , so it is contained
in a basis B of M . Note that e is not in B, for otherwise B contains C.
Also, B ∩X and B ∩ Y are independent in M |X and M |Y , respectively. If
B ∩X is not a basis of M |X, then |B ∩X| < r(X). This means that

|B ∩ Y | = |B| − |B ∩X| > r(M)− r(X) = r(Y ).

But this is impossible, as B ∩Y is independent in M |Y . Therefore B ∩X is
maximally independent inM |X. This means that B∪e contains a circuit C ′

of M |X, by Proposition 1.12. Note that C ′ is a circuit of M and C ̸= C ′,
since C ′ is disjoint from Y , and C is not. Now B is independent in M , and
B ∪ e is dependent, but B ∪ e contains two distinct circuits, C and C ′. This
contradicts Proposition 1.12. Therefore I is independent in M . We have
proved that the independent sets of M and (M |X) ⊕ (M |Y ) are identical,
so M = (M |X)⊕ (M |Y ), as required. □

If (X,Y ) is any partition of the ground set of a matroid M , then

r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ) = r(E(M)) + r(∅) = r(M),

by the submodularity of the rank function. The last two results show that
this inequality is an equality precisely in the case that M can be expressed
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as a direct sum of non-empty matroids. This motivates the following defi-
nitions.

Definition 8.5. Let M be a matroid. A 1-separation of M is a partition
(X,Y ) of E(M) such that r(X) + r(Y ) = r(M).

Definition 8.6. A matroid is connected if it does not have a 1-separation.

Propositions 8.3 and 8.4 establish the following result.

Proposition 8.7. A matroid is connected if and only if it cannot be ex-
pressed as the direct sum of two non-empty matroids.

Exercise 8.8. Prove that if e is a loop or a coloop of M and |E(M)| ≥ 2,
then ({e}, E(M)− e) is a 1-separation.

Connected components. Recall that the connected components of a
graph are defined as the equivalence classes of a particular relation on the
vertices (see page 17). We can develop a similar idea for matroids.

Proposition 8.9. LetM be a matroid, and let C1 and C2 be distinct circuits
in M such that C1 ∩C2 ̸= ∅. If e ∈ C1 and f ∈ C2, then there is a circuit C
of M such that {e, f} ⊆ C ⊆ C1 ∪ C2.

Proof. Assume the result does not hold. Amongst all circuits C1, C2 for
which the result fails, choose C1 and C2 so that |C1 ∪ C2| is as small as
possible. Now e ∈ C1 and f ∈ C2, but there is no circuit containing {e, f}
and contained in C1 ∪ C2. Clearly e /∈ C2 and f /∈ C1, because otherwise
C1 or C2 is a circuit contained in C1 ∪ C2 that contains both e and f .
Let x be an element in C1 ∩ C2. By Proposition 5.13, there is a circuit
C3 ⊆ (C1 ∪ C2) − x such that e ∈ C3. Now C3 must contain an element
y ∈ C2−C1, for otherwise C3 is properly contained in C1. We have assumed
that no circuit in C1 ∪ C2 contains both e and f . Since e ∈ C3, it follows
that f is in C2 − C3. As y ∈ C2 ∩ C3, we can apply Proposition 5.13 to
C2 and C3, and deduce that there is a circuit C4 ⊆ (C2 ∪ C3) − y such
that f ∈ C4. Now C4 ⊆ (C1 ∪ C2) − y. There is at least one element in
C1 ∩ C4, for otherwise C4 is properly contained in C2. Moreover, e ∈ C1

and f ∈ C4. There cannot be a circuit in C1 ∪ C4 that contains both e and
f , for then there would be a circuit in C1 ∪ C2 that contains both e and f .
But |C1 ∪C4| < |C1 ∪C2|, since y /∈ C1 ∪C4. This contradicts our choice of
C1 and C2, which completes the proof. □
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For a matroid M , let ∼ be the relation on E(M) such that, for e, f ∈
E(M), we have e ∼ f if either e = f , or some circuit of M contains e and
f . The next result follows almost immediately from Proposition 8.9.

Corollary 8.10. Let M be a matroid. The relation ∼ is an equivalence
relation on E(M).

A connected component of M is an equivalence class under ∼.

Proposition 8.11. The matroid M is connected if and only if E(M) is a
connected component.

Proof. Let E be the ground set of M . Assume that E is not a connected
component, so M has a connected component X such that X ̸= E. Now
every circuit of M is contained in X or E−X. Therefore C ⊆ E is a circuit
of M if and only if it is a circuit of M |X or M |(E − X), and it is easy
to see this is true if and only if C is a circuit of (M |X) ⊕ (M |(E − X)).
Therefore M = (M |X)⊕ (M |(E −X)). Proposition 8.3 now shows that M
has a 1-separation, so it is not connected.

For the converse, assume thatM is not connected, so it can be expressed
as M = M1 ⊕M2, by Proposition 8.7, where M1 and M2 are not empty
matroids. It is easy to see that no circuit of M can contain elements from
E(M1) and E(M2), so it is clear that E(M) is not a component. □

Exercise 8.12. Prove that the partition (X,Y ) is a 1-separation of the
matroid M if and only if X and Y are unions of connected components.

Connectivity and graphs. Which graphs correspond to connected
graphic matroids? Isolated vertices in a graph have no effect on the corre-
sponding graphic matroid, so we will consider only graphs without isolated
vertices. If a graph G contains a loop, then M(G) is connected if and only
if G contains no other edge. Therefore we may as well consider loopless
graphs.

Let G = (V,E) be a graph, and let v be a vertex of G. Then G − v is
the graph

(V − v, {e ∈ E : v /∈ e}).
In other words, G − v is obtained from G by deleting the vertex v, and all
the edges incident with it. A vertex v of G is a cut-vertex if G− v has more
connected components than G. A graph is 2-connected if it is connected,
and has no cut-vertices.
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Proposition 8.13. Let G be a loopless graph with no isolated vertices.
Then M(G) is connected if and only if G is 2-connected.

Proof. Assume that M(G) is connected. First, suppose that G is not con-
nected. Let H1 and H2 be two distinct connected components of G. Since G
has no isolated vertices, there are edges e1 and e2 of G[H1] and G[H2] respec-
tively. But clearly no cycle of G can contain both e1 and e2. Therefore no
circuit of M(G) contains e1 and e2, and Proposition 8.11 states that M(G)
is not connected, contrary to assumption. Henceforth, we may assume that
G is connected.

Suppose that G is not 2-connected. Then G has a vertex v such that
G − v has at least two connected components, H1 and H2. Since G is
connected, there are paths in G from vertices in H1 to vertices in H2. Any
such path must go through v, so there are edges e1 and e2 such that ei
joins v to a vertex in Hi, for i = 1, 2. Let ei = {v, ui}, for i = 1, 2. As
M(G) is connected, there is a cycle C of G that contains e1 and e2, by
Proposition 8.11. Now C − v is a path in G− v, and this path connects u1
to u2. But u1 and u2 are in different connected components of G − v, so
we have a contradiction. Therefore G is 2-connected. This completes one
direction of the proof.

For the converse, assume that G is 2-connected but M(G) is not con-
nected. Then E(G) is not a connected component of M(G), by Proposi-
tion 8.11. Let e1 and e2 be edges of G that are not contained in a common
cycle of G. Note that G has no loops, and let ei be {ui, vi}, for i = 1, 2.
Let P be a walk joining a vertex in {u1, v1} to a vertex in {u2, v2}, and
amongst all such walks assume that P has been chosen so that it has the
smallest possible number of edges. The walk P exists since G is connected.
By relabelling, we can assume that P joins u1 to u2. Now neither v1 nor
v2 is contained in P , for otherwise our assumption on the length of P is
contradicted. Moreover, P is a path, for the same reason.

Assume that P contains an edge e3. If there were no cycle containing e1
and e3, then we would have chosen that pair instead of e1 and e2, since e1
and e3 are joined by a shorter path. Hence there is a cycle C1 containing
e1 and e3. Similarly, the cycle C2 contains e2 and e3. Since e3 is an edge in
both C1 and C2, Proposition 8.9 implies that there is a circuit ofM(G) that
contains e1 and e2, contrary to our assumption. Therefore P contains no
edges, so it is a single vertex, u. This implies u1 = u2 = u and ei = {u, vi},
for i = 1, 2. Note that G−u is connected, since G is 2-connected. Therefore
there is a path from v1 to v2 in G−u. But this path, along with the edges e1
and e2, makes a cycle of G that contains e1 and e2. This final contradiction
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completes the proof. □

Higher connectivity. Next we extend our notion of connectivity. Let M
be a matroid. Recall that if X and Y are disjoint sets such that X ∪ Y =
E(M), then r(X) + r(Y ) ≥ r(M), or equivalently r(X) + r(Y )− r(M) ≥ 0.
Moreover, (X,Y ) is a 1-separation if and only if |X|, |Y | ≥ 1 and r(X) +
r(Y )− r(M) < 1. This inspires the following extension of the definition.

Definition 8.14. Let M be a matroid with ground set E. For X ⊆ E, let

λM (X) = r(X) + r(E −X)− r(M).

We call λM (X) the connectivity function of M .

Definition 8.15. Let k be a positive integer. A k-separation of a ma-
troid M is a partition (X,Y ) of E(M) with the property that |X| ≥ k and
|Y | ≥ k, and λM (X) < k.

Definition 8.16. Let n be an integer that is at least two. A matroid is
n-connected if there is no positive integer k < n such that M has a k-
separation.

Note that, under this definition, a 2-connected matroid is what we have
previously called a connected matroid.

Next we explore some of the properties of the connectivity function of
a matroid. One of its nice features is that it is invariant under duality. To
see this, we first give an equivalent formulation of the connectivity function
using the corank of a set.

Lemma 8.17. Let M be a matroid and X ⊆ E(M). Then

λM (X) = r(X) + r∗(X)− |X|.

Proof. By Proposition 3.9, we have r(E −X) = r∗(X)− |X|+ r(M). So

λM (X) = r(X) + r(E −X)− r(M)

= r(X) + r∗(X)− |X|+ r(M)− r(M)

= r(X) + r∗(X)− |X|,

as required. □

Corollary 8.18. Let M be a matroid, and X ⊆ E(M). Then

λM (X) = λM∗(X).
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The next result follows immediately.

Corollary 8.19. A matroid M is n-connected if and only M∗ is n-
connected.

Proposition 8.20. Let M be an n-connected matroid with at least 2(n−1)
elements. Then every circuit of M contains at least n elements.

Proof. Let E be the ground set of M . Suppose M has a circuit C with at
most n − 1 elements. Let k = |C|. Then |E − C| ≥ k, since k ≤ n − 1 and
|E| ≥ 2(n − 1). Moreover r(C) = k − 1, and r(E − C) ≤ r(M). Therefore
λM (C) = r(C) + r(E − C)− r(M) < k, so (C,E − C) is a k-separation for
k < n, which contradicts the fact that M is n-connected. □

Most of our focus will be on 3-connected matroids. A matroid is simple
if every circuit has at least three elements, and is cosimple if its dual is
simple. Corollary 8.18 and Proposition 8.20 establish the following fact:

Proposition 8.21. A 3-connected matroid with at least four elements is
both simple and cosimple.

Proposition 8.7 characterises connected matroids in terms of 1-sums. We
can similarly characterise 3-connected matroids in terms of a sum operation.

Definition 8.22. Let M1 and M2 be two matroids satisfying E(M1) ∩
E(M2) = {e}, where e is neither a loop nor a coloop in M1 or M2. Let
C1 = C(M1) and C2 = C(M2). The 2-sum of M1 and M2, written M1⊕2M2,
has (E(M1) ∪ E(M2))− e as its ground set, and

{C ∈ C1 : e /∈ C} ∪ {C ∈ C2 : e /∈ C}∪
{(C1 ∪ C2)− e : C1 ∈ C1, C2 ∈ C2, e ∈ C1 ∩ C2}

as its family of circuits.

Definition 8.23. Let k be a positive integer, and let (X,Y ) be a k-
separation of a matroidM . The separation (X,Y ) is exact if λM (X) = k−1.

The following theorem is due to Seymour.

Theorem 8.24 (Seymour, 1980). If (X,Y ) is an exact 2-separation of the
matroid M , then there are matroids M1 and M2 with ground sets X ∪ e and
Y ∪ e respectively (where e /∈ X ∪Y ) such that M =M1⊕2M2. Conversely,
if M1 and M2 are matroids such that |E(M1)|, |E(M2)| ≥ 3, and E(M1) ∩
E(M2) = {e}, and e is neither a loop nor a coloop in M1 or M2, then
(E(M1)− e, E(M2)− e) is an exact 2-separation of M1 ⊕2 M2.
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Corollary 8.25. Suppose that M is a connected matroid. Then M is 3-
connected if and only if it cannot be expressed in the form M1 ⊕2 M2 such
that M1 and M2 both have at least three elements.

Chain Theorems and Splitter Theorems. Inductive tools for connec-
tivity are very important. The next result is a canonical example of such an
inductive tool; it ensures the existence of an element that can be removed
while retaining the property of being connected.

Proposition 8.26. Let M be a connected matroid. Then either M\e or
M/e is connected, for any element e ∈ E(M).

Proof. First assume that e is a loop or coloop of M . Since M is connected,
this means that E(M) = {e}. Thus M\e = M/e is the empty matroid,
which is connected. So we may assume that e is not a loop or a coloop.

Assume that neitherM\e norM/e is connected. Then there are distinct
elements f, g ∈ E(M) − e such that f and g are not in a common circuit
of M/e. Assume that f and g are contained in a connected component of
M\e. Call this component X. Since M\e is not connected, X is not equal
to the ground set of M\e. We let Y be E(M\e)−X. Then both X and Y
are non-empty, and rM\e(X) + rM\e(Y ) = r(M\e).

By the definition of a component, there is a circuit C of M\e that con-
tains f and g. Then C cannot be a circuit of M/e, since f and g are not
contained in a common circuit of this matroid. Therefore Proposition 5.14
implies that e ∈ clM (C). Since C is a subset of X, it follows that e is
also in clM (X). Therefore rM (X ∪ e) = rM (X) = rM\e(X). We also have
rM\e(Y ) = rM (Y ) and r(M) = r(M\e), as e is not a coloop. Therefore

λM (X ∪ e) = rM (X ∪ e) + rM (Y )− r(M)

= rM\e(X) + rM\e(Y )− r(M\e) = 0,

soM has a 1-separation. This is a contradiction, asM is connected. There-
fore f and g are not in the same connected component of M\e.

Now, no circuit of M\e contains f and g, but f and g are contained in
a circuit C of M , since M is connected. Since C is not a circuit of M\e, it
follows that e ∈ C. Thus C − e is a circuit of M/e that contains f and g,
by Proposition 5.14. This contradiction completes the proof. □

The analogue of Proposition 8.26 is not true for 3-connected matroids,
as the next example shows. Let n ≥ 2 be an integer. The n-spoke wheel
(written Wn) is a graph on n+1 vertices. It is obtained from a cycle with n
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vertices by adding a new vertex that is adjacent to every other vertex. We
call the graphic matroid M(Wn) the rank-n wheel. Note that the edges in
the original cycle of Wn form a circuit-hyperplane of M(Wn). The matroid
obtained by relaxing this circuit-hyperplane (see page 54) is called the rank-
n whirl, and is denoted Wn. Any wheel or whirl is 3-connected. However,
if M is a rank-n wheel or whirl, and e is any element of M , then M\e
contains a series pair, and M/e contains a parallel pair. If n > 2, then
Proposition 8.21 implies that M\e and M/e are not 3-connected, for any
element e.

Despite this example, there are still useful inductive results for 3-
connected matroids. In fact, the next result (known as the Wheels and
Whirls Theorem) shows that these matroids are the only ones to exhibit
this behaviour.

Theorem 8.27 (Tutte, 1966). Let M be a non-empty 3-connected matroid.
If M is not a wheel or a whirl, then there is an element e in E(M) such
that either M\e or M/e is 3-connected.

A non-simple matroid M has a canonically associated simple matroid,
called the simplification of M . We denote this simplification by si(M).
Informally, si(M) is obtained by deleting all the loops from M , and then
deleting all but one element from every parallel class. More formally, we note
that a rank-one flat consists of a parallel class (and the set of all loops). We
let the ground set of si(M) be the set of rank-one flats of M . If {F1, . . . , Ft}
is a set of rank-one flats of M , then the rank of {F1, . . . , Ft} in si(M) is

rM

(
t⋃

i=1

Fi

)
.

This gives us the rank of any subset of the ground set of si(M), and therefore
completely defines si(M).

The cosimplification (written co(M)) of M is defined to be (si(M∗))∗.
Thus co(M) is obtained from M by contracting all coloops, and contracting
all but one element from every series class. The next result is known as
Bixby’s Lemma.

Lemma 8.28 (Bixby, 1982). Let e be an element of the 3-connected matroid
M . Then either co(M\e) or si(M/e) is 3-connected.

Results such as Proposition 8.26, Theorem 8.27, and Lemma 8.28 are
sometimes known as chain theorems, since they let us find a chain of con-
nected matroids, each one obtained from the previous one by deleting or
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contracting a single element (and possibly simplifying or cosimplifying).
Typically, as we move into higher types of connectivity, it becomes more
and more difficult to obtain chain theorems. This is why we often focus
on 3-connected matroids: 3-connectivity is strong enough to impose useful
structural constraints, but weak enough so that there are good inductive
tools. One of the most important of these tools is the Splitter Theorem of
Seymour. A proper minor of the matroid N is a minor that is not equal to
N .

Definition 8.29. Let M be a minor-closed class of matroids. A splitter of
M is a matroid M ∈ M such that no 3-connected member of M contains a
proper minor isomorphic to M .

(Note that when we say that M is a class of matroids, we always mean
that M is closed under isomorphism.) Equivalently, if N is a 3-connected
member of M, and N has a minor isomorphic to M , then N itself is iso-
morphic toM . Since no member of M that properly containsM as a minor
can be 3-connected, we might say that M splits the members of M into
non-3-connected matroids. It seems that verifying that M is a splitter for
M could be an infinite task: we might need to examine all the 3-connected
members of M and check that none of them properly contains an isomor-
phic copy ofM as a minor. Seymour’s theorem shows us that this is not the
case. A single-element extension of a matroid M is a matroid N with the
property that there is an element e in E(N) such that N\e =M . Dually, a
single-element coextension of M is a matroid N with an element e ∈ E(N)
such that N/e = M . Now we can state the Splitter Theorem of Seymour.
It can be seen as a strengthening of the Wheels and Whirls Theorem.

Theorem 8.30 (Seymour, 1980). Let M be a class of matroids. Let M be
a 3-connected member of M with at least four elements, such that if M is
a wheel or a whirl, then M contains no wheel or whirl with rank greater
than M . Then M is a splitter for M if and only if there is no 3-connected
single-element extension or coextension of M that is contained in M.

Therefore, to check that M is a splitter for M, we do not need to check
all the 3-connected members of M, only the ones that are single-element
extensions or coextensions of M . The Splitter Theorem can also be stated
in the following way.

Theorem 8.31. Let M and N be 3-connected matroids such that N has a
proper minor isomorphic to M . Assume that N has at least four elements,
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and if N is a wheel or a whirl, then M does not have any wheel or whirl
with rank greater than N as a minor. Then there is an element e ∈ E(M)
such that either M\e or M/e is 3-connected, and has a minor isomorphic
to N .

Thus we can use the Splitter Theorem to construct a chain of 3-connected
matroids, each one produced from the previous one by deleting or contract-
ing a single element. In this case, we also have the condition that all the
matroids in the chain have a copy of N as a minor.
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