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These notes are supposed to provide people intending to go to the summer
school with some useful background material and references. The intention
is not to be intimidating, or that you have to know this material inside out
– but you should feel perfectly comfortable to go through the material if the
need arises. This should not be too hard as many of the topics discussed
here should be part of undergraduate physics courses. That being said, if
something from the list of contents or on the list given on the website seems
to be unknown, please have a look at these notes to see if you can learn it.
As always, if you are stuck it will be a good idea to have a quick look at
the references given below. So think of these notes as a mix of cheat sheet,
summary, introduction and self-test. Enjoy1 !
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1 Mathematics

1.1 Normal Modes – A Playground for Linear Algebra

Take a setup of n masses, all of mass m, coupled by n+ 1 springs3, each with the same
spring constant k, just as pictured below. Let us call their displacement from their
equilibrium positions xj , meaning xi = 0 corresponds to the i-th equilibrium position.
And the resulting, natural boundary conditions for the walls (also giving the names of the
walls’ coordinates) is x0 = xn+1 = 0. The distance between two neighbouring equilibria
shall be a – and independent of the mass considered.

spring 1

x1

spring 2

x2 . . .
spring n spring n+ 1

xnxn−1

3It may seem odd at first to call this a ‘mathematics problem’, but despite the physical setup, the
discussion makes heaps of use of things like Jordan decompositions, eigenvalues and eigenvectors,
orthogonality, . . . – so I find it fair to call it a mathematics problem.
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1.1 Normal Modes – A Playground for Linear Algebra 1 MATHEMATICS

An obvious question4 is how these masses will move if they were to be moved out of
equilibrium. Here is how one would go about this:

1. Write down Newton’s law for each point. You should get something along the lines
of

mẍj = kxj−1 − 2kxj + kxj+1 (1)

or something involving a matrix

−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2


.

2. To solve this set of ODE, it is a perfect opportunity to recap ‘normal modes’. A
more mathematical way of phrasing it is: We want to find a different set of coordin-
ates (other than the already cleverly chosen xj) such that the e.o.m. (equations of
motion) become simpler. This is where the matrix picture comes in! This matrix
can be diagonalized – think about it, try to figure out why! – and therefore provides
new coordinates. So, the task now is to find the eigenvalues and eigenvectors of the
matrix. These then are the normal frequencies and normal modes of the matrix.

For example, try to guess a solution of the kind

xj = Aje
iωt.

Insert in (1) and try to compare the result with what you know from a Jordan
decomposition.

3. To actually get the normal frequencies can still look a bit daunting. So, forget –
for a moment – about the boundary conditions x0 = xn+1. Now, the matrix will
be infinitely large5 and look like so:

. . . . . . . . .
1 −2 1

. . . . . . . . .

 .

Assume that the solution will take on the form of a travelling wave:

xj(t,k) = C(k)ei(`ka−ω(k)t), (2)
4To anyone who likes physics. . .
5But part of the summer school will intend to get rid of fears of infinities, so buckle up!
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1.2 ‘Functional Analysis’ – Bits and Pieces of Distributions 1 MATHEMATICS

where k is a wave number, and ` is an integer. Now: Check that only frequencies
ω(k) will provide a solution of the form (2) if they fulfil the dispersion relation

ω(k) = 2

√
k

m
sin

ka

2
. (3)

4. Now, back to the finite chain – what will change for k and ` if we reintroduce the
boundary conditions x0 = xn+1? Hint: Think standing wave! The allowed (and
sought for!) frequencies should change to

ω` = 2

√
k

m
sin

(
π`

2(n+ 1)

)
, ` ∈ {1, . . . ,n}.

5. What does xj(t) look like now? Use that to find that the normal modes are, up to
normalization constants, given by

a` = C`



sin
(

1
n+1`π

)
sin
(

2
n+1`π

)
...

sin
(
n−1
n+1`π

)
sin
(

n
n+1`π

)


.

6. That finally solves it. Unless you want to find the C` – for that, first check that
these a` are orthogonal for different values of `. Then demanding orthonormality
you will find that

C` =

√
2

n
.

One (of the many) references you can use for looking this up, would be [JS12], p.187ff – at
least for the physics side. Also the literature on numerical mathematics (e.g. [PTVF07],
p.1024ff) will have plenty to say, this time looking at it as a discretization of the 1D wave
equation −utt + c2uxx = 0. Feel free to get that discretization yourself. . .

1.2 ‘Functional Analysis’ – Bits and Pieces of Distributions

This section is more a summary of results then asking you to re-derive things or calculate
things. Mostly. But some of it will be useful later in the section on complex analysis, so
I will collect some things here.

1.2.1 General Things and Notation

First a bit on notation: While mathematicians usually like to highlight a distribution as
a linear map from some function space to some field (normally either R or C)6, physicists

6And as a linear functional it therefore is contained in the dual space of the given function space.
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1.2 ‘Functional Analysis’ – Bits and Pieces of Distributions 1 MATHEMATICS

prefer to view them as ‘functions’ with a bit weirder properties than normal functions. For
example, what a physicist would call δ(x−x0) (and demand a property under integration),
a mathematician would call δx0 followed by the function it is acting on, e.g. δx0 [f ]. To
get that function f into the picture, the physicist would write

∫
R δ(x−x0)f(x)dx. What

one prefers is personal taste – and sometimes different problems may be clearer in one
notation or the other. For that specific, latter reason, I introduce the Kramers-Kronig
relations in 1.3.5 in the mathematical notation. However, I will give the result in both
notations and for the summer school we will be concerned (probably) only with the
physicists’ notation.
Another short note regarding language: Physicists look mainly at distributions as

something coming with an integral that integrates some way or the other over the function
the distribution is acting on. The bits inside the integral are called the integral kernel.
The language is borrowed from integral transforms and while useful, becomes a bit subtle
with the δ-distribution/function of Dirac. After all, it is far from apparent that the
definition as given by the mathematicians (see below) gives rise to the thing (the kernel)
that physicists love to throw around in a well-defined way7. So, in general this means
that a distribution K acting on f has a kernel K(x) if it can be written as:

K[f ] =

∫ ∞
−∞

K(x)f(x)dx. (4)

Common examples in physics are the Dirac δ, propagators, the exponential eikx of a
Fourier transform, e−kx for a Laplace transform, and many more. . .

1.2.2 Dirac’s δ

Second, let us collect a few results for the Dirac delta function/distribution8.

1. The definition, both notations:

δ(x) s.t. f(x0) =

∫ ∞
−∞

δ(x− x0)f(x)dx, δx0 [f ] := f(x0) (5)

2. A straightforward result is what its Fourier transform9 (see 1.3.4 below) is:

F [δx0 ](k) =

∫ ∞
−∞

δ(x− x0)e−ikxdx = e−ikx0 . (6)

Put differently: ∫ ∞
−∞

ei(k−k0)xdx = 2πδ(k − k0).

7Indeed, the Schwarz kernel theorem provides a justification for physicists’ preference to write all kinds
of things with a kernel – but let’s not worry about these technicalities.

8It has plenty of names. Many more if one slightly changes the area of mathematics it is encountered
in. . .

9Technically, one would have to be very careful in extending the Fourier transform’s domain – after all,
normally Fourier transforms are only defined for L2 functions/Schwartz functions/. . .
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1.2 ‘Functional Analysis’ – Bits and Pieces of Distributions 1 MATHEMATICS

Note the factor of 2π – this is due to our convention for the Fourier transform,
again, see 1.3.4.

3. Obviously, we cannot expect to always have these nice arguments (x − x0) for δ.
So it is important to (at least) know that

δ(g(x)) =
∑

Zeroes xi of g(x)

1

|g′(xi)|
δ(x− xi), (7)

where it is important that g(x) has only simple zeroes.

4. It is also possible to differentiate the δ itself. The idea is that you would use partial
integration10 to make sense of it. Neglecting boundary terms11, of course. We get:(

dn

dxn
δ(x− x0)

)
=: δ(n)(x− x0) s.t. (−1)n

∫ ∞
−∞

δ(n)(x− x0)f(x)dx = f (n)(x0).

(8)
Note that I will carefully distinguish between δn and δ(n) to keep the n-dimensional
distribution separated from its n-th derivative. Again, the mathematical notation
would be a bit shorter:

δ(n)x0 [f ] := (−1)nf (n)(x0).

5. The next step is to generalize this to n dimensions. We get:

δn(x) s.t. f(x0) =

∫
Rn
δn(x− x0)f(x)dnx, δnx0

[f ] := f(x0), (9)

F [δnx0
](k) =

∫
Rn
δn(x− x0)e

−ik·xdnx = e−ik·x0 , (10)∫
Rn
ei(k−k0)·xdnx = (2π)nδn(k− k0), (11)

δn(g(x)) =
∑

xi∈g−1(0)

1

|Jg(xi)|
δn(x− xi), (12)

where, now, g : Rn → Rn and Jg denotes the Jacobian determinant of g.

A good, though very mathematical and technical book on this would be [DK10]. More
instrumentalist’s approaches can be found in most physics/mathematics books that have
to cover this. Examples would be: [Sha14], [Jac75], [Gri08], [Gri12], [SG10], [Zor04]
or [BD97].

10Oh, thou lovely standard trick. . .
11Yet another standard trick. Here it means we are taking care with the domain (as a function space)

of δ.
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1.2 ‘Functional Analysis’ – Bits and Pieces of Distributions 1 MATHEMATICS

1.2.3 Green’s Functions

Now that we know a bit about the δ-distribution, we can recap one of the most powerful
tools for (linear12) partial differential equations.
Assume you have some linear partial differential operator D. If you want to solve an

inhomogeneous equation of the type

Df = g (13)

for f this looks daunting at first. But Green’s functions13 – if known – will tremendously
help with this. So, what is the definition of a Green’s function?

Definition 1. A Green’s function G(x,y) for the linear partial differential operator D is
a solution to the following inhomogeneous PDE:

DxG(x,x0) = δ(x− x0). (14)

In the following discussion I will assume that G(x,y) can be written as G(x − y) –
which is the case for translational invariant (constant coefficient) D.
The trick now is to realize that a convolution14 of our initial boundary condition g

with this Green’s function will guarantee a solution. In the following calculation of this
I will try to be cavalier about the notation.

(Dxg ∗G)(x) = D

∫
g(y)G(x− y)dy (15)

=

∫
g(y)DxG(x− y)dy (16)

=

∫
g(y)δ(x− y)dy (17)

= g(x) (18)

Voilà15. Just what we wanted. A physical point of view on this is the following: Since our
operator is linear, we expect it to fulfil some kind of superposition principle. And that
is just what the Green’s function provides us with. A physicist’s interpretation of the
mathematics going on might be to interpret D as a ∞×∞-matrix and G(x,y) ends up
as its ‘matrix inverse’. You also could discretize D and then define a finite-dimensional

12In the summer school you will see how one can push this into uncomfortably non-linear regimes. . .
13There is some notational debate whether or not to include the apostrophe and s – so sometimes you

will find them as ‘Green functions’. At least, ‘Green’s functions’ are oddballs when compared to
Bessel functions, Taylor series or Hessian matrices.

14Remember that the convolution f ∗ g of two functions f and g (again forgetting about domains and
function spaces for the moment) is defined as: (f ∗ g)(x) :=

∫∞
−∞ f(y)g(x− y)dy.

15A proof of this in the more general case when G(x,y) cannot be written as G(x −
y) can be found at =https://en.wikipedia.org/wiki/Fundamental_solution#Proof_that_the_
convolution_is_a_solution. Note that depending on the used literature, there will be slight dif-
ferences in the definition of a ‘fundamental solution’ as used in this link and a Green’s function,
e.g. [Eva10].
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1.3 Complex Analysis 1 MATHEMATICS

matrix representation and consider G(x,y) the corresponding limit. The latter can be
done mathematically precise though it will be unnecessarily cumbersome (to a physicist).
Now that we have the general use of Green’s functions, let’s have a look at specific

ones for the Laplace equation in different dimensions:

Dimension D Green’s function G

1D: ∂2x xΘ(x)

2D: ∂2x + ∂2y
1

2π
ln(
√
x2 + y2)

3D: ∂2x + ∂2y + ∂2z − 1

4π
√
x2 + y2 + z2

nD (n ≥ 3): ∂i∂
i − 1

n(n− 2)V (Bn
1 )

1

(xixi)
(n−2)/2

V (Bn
1 ) stands for the volume of the n-dimensional unit ball. The notation used in the

last line is the Einstein sum convention. As we are working in Euclidean space, we do
not have to worry about sign entering from lowering or raising indices. If you forgot how
that works, look it up – Wikipedia16 should be already sufficient, or any of the references
that might go in that direction. Generally the most likely sources are books dealing with
differential equations (e.g. [Hab04], [BD97], [Tay11]), electrodynamics (e.g. [Jac75]) or
relativistic quantum theories (e.g. [Sre11] makes heavy use of it).
A last short note: Mathematicians usually like to define the Laplacian ∆ as −∂i∂i to

have a positive spectrum. Physicists don’t. So be prepared to occasionally find differing
overall signs for things like Green’s functions17.

1.3 Complex Analysis

Here, I will follow mostly what I can find in either [DK10], [SG10] or [SLSS09]. Especially
for sections 1.3.2 and 1.3.3 I suggest looking up your favourite exercise book and do a
few of the corresponding calculations of residues, real integrals and the like. [SLSS09],
for example, has a large amount of exercises for this.

1.3.1 Riemann-Lebesgue Lemma

The Riemann-Lebesgue lemma/theorem reads:

Theorem 1. If f(x) is Lebesgue integrable18, its Fourier transform F [f ](k) will be, too.

16For example: https://en.wikipedia.org/wiki/Einstein_notation. And some of the Green’s func-
tions given in the table are adapted from https://en.wikipedia.org/wiki/Green%27s_function#
Table_of_Green.27s_functions.

17In the wild. The summer school will follow physicists’ convention.
18This technicality is actually important – take for example f(x) = sin(x2), as in [SG10], p.785f.

8

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Green%27s_function#Table_of_Green.27s_functions
https://en.wikipedia.org/wiki/Green%27s_function#Table_of_Green.27s_functions


1.3 Complex Analysis 1 MATHEMATICS

In particular this means that

lim
k→∞

F [f ](k) = 0. (19)

The physicist’s interpretation is that the integrand in the Fourier transform oscillates
more and more rapidly and as a result averages out.

1.3.2 Cauchy’s Theorem, Residue Theorem and Co.

•

Theorem 2 (Cauchy’s integral theorem). For U simply connected, f : U → C
holomorphic and γ a rectifiable, closed curve in U :∮

γ
f(z)dz = 0. (20)

•

Theorem 3 (Cauchy’s integral formula). For U simply connected, f : U → C
holomorphic and γ a rectifiable, closed curve in U with winding number 1 around
a ∈ U :

f (n)(a) =
n!

2πi

∮
γ

f(z)

(z − a)n+1
dz. (21)

•

Definition 2 (Residue of a function f). For finite a being a pole of order n of f ,
the residue of f at a is given by

Res(f,a) =
1

(n− 1)!
lim
z→a

dn−1

dzn−1
((z − a)nf(z)) . (22)

At infinity, the residue is given by

Res(f,∞) = −Res

(
1

z2
f(1/z),0

)
. (23)

•

Theorem 4 (Residue theorem). For a positively oriented, simple closed curve with
open interior U and f holomorphic on U \ {a1, . . . ,an}:∮

γ
f(z)dz = 2πi

n∑
i=1

Res(f,ai). (24)

For poles at finite z and a function possible to write as a Laurent series around the
pole, one can also take the coefficient of the (−1)-th term of the Laurent series.

It’s good and easy enough to check the residue theorem by doing it for
∮
S1

1
zdz.

9



1.3 Complex Analysis 1 MATHEMATICS

1.3.3 Calculating Real Integrals with Complex Analysis

Two theorems helping in evaluating integrals19 will be given here, based on what can be
found in [SLSS09]. That’s also, where you can find examples and exercises for this kind
of thing. Also, I will describe a few typical functions giving off warning signs that you
will end up having to discuss branch cuts.

• Let HR be a stand-in for a half-circle of radius R in either the upper or the lower
complex half-plane, closed along the real line.

•

Theorem 5. Let α > 1 and M > 0. If

|f(z)| ≤ M

Rα
for z = Reiθ, θ ∈ R (25)

then
lim
R→∞

∮
HR

f(z)dz = 0 (26)

•

Theorem 6. Under the same conditions:

lim
R→∞

∮
HR

eikzf(z)dz = 0 (27)

Now for the branch cuts: If there are branch cuts, contours for using residue calcu-
lus/complex analysis have to be carefully chosen. For example, if a contour hits a branch
cut, go – a distance ε away from the branch cut – all the way d to the nearest branching
point, go around on a semicircle of radius ε and go back your distance d on the other
side of the branch cut. Then you can finally continue with your original contour. Branch
cuts make life difficult, so it is good to recognize when they happen:

• Roots n
√
z

• Logarithms; ln z for example has it along the non-positive real axis21.

• As many integrals of inverse trig functions (arccos , arcsin, arctan, . . . ) have a rela-
tionship to the complex root (e.g. arccos, arcsin) or logarithm (e.g. arctan), they
do have, too.

19And series. Let us forget about series.20
20Here. In this notes. Maybe it will be useful. Who knows. One never knows. And you cannot know

too much.
21Unless you want to use really unusual choices where to do the needed branch cut. There is a small

amount of freedom if you want to mess with people and make your calculation obscure.
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1.3 Complex Analysis 1 MATHEMATICS

• As hyperbolic (cosh, sinh, . . . ) functions are trig functions with complex argument,
their inverses22 have them.

• More generally, functions as arguments of ln or n
√
· make things a lot more com-

plicated.

• Example 1: ln
(
z+1
z−1

)
has a branch cut between −1 and 1

• Example 2:
√
z2 + 1 has two branch points with separate cuts extending to infinity.

A really helpful example for this would be to calculate
∫∞
−∞

1
−z2+a2∓iεdz, with our

limR→∞HR trick. This is not necessarily a good example to get started, so bear in mind
my suggestion at the beginning of section 1.3.

1.3.4 Fourier Transformations

Let’s summarize a few results on Fourier transforms!

• The Fourier transform F turns a function f(x) into a function23 f̂(k) according to
the following scheme:

F [f ](k) = f̂(k) :=

∫ ∞
−∞

e−ikxf(x)dx. (28)

• It has an inverse F−1 turning f̂(k) back into f(x) (under omission of technicalities)
given by

F [f̂ ](x) =
1

2π

∫ ∞
−∞

eikxf̂(k)dk. (29)

If we were to generalize to higher dimensions n, the prefactor would have to have
the dimension n as a power. You can see an example of this in section 1.2.2 for the
Dirac δ.

• Gaussians are fixed points of F :

F [exp(−σx2)](k) =

√
π

σ
exp

(
− k

2

4σ

)
, (30)

i.e. Gaussian F7→ Gaussian. (31)

22I call them arsinh, artanh, . . . and so on, because they have nothing to do with ‘arcs’, but with ‘areas’.
This seems to be old-fashioned and slowly dying out. It’s what I was taught and what my Latin
knowledge makes me certain of. And Wikipedia agrees with me, see https://en.wikipedia.org/
wiki/Inverse_hyperbolic_function#Notation. But as you can see, I need a lot of justification for
this – at least ‘down under’ Latin is a minority background. All CAS I know of use arcsinh, arctanh
etc. Bear with me here, I like being a special snowflake.

23At least in these notes it should be simple to distinguish a hat for ‘operator’ and a hat for ‘Fourier
transformed’.
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1.3 Complex Analysis 1 MATHEMATICS

• Taking the Fourier transform of a shifted function f(x − x0) introduces a phase
factor.

• For complex conjugation we have

F [f ](k) = f̂(k) (32)

• The Fourier transform evaluated at k = 0 is the integral of the transformed function
– this illustrates the need to put a lot of effort into characterizing the domain of
F . These notes will not cover this function space technicality with few exceptions,
like this mentioning of it.

• Derivatives are turned into polynomials:

F [∂xf ](k) = ikf̂(k). (33)

This can be used to turn differential equations into polynomial equations (as with
Laplace transforms) and plays a role when defining fractional derivatives or more
general pseudo-differential operators24.

• Convolutions are turned into products:

F [f ∗ g](k) = f̂(k) · ĝ(k). (34)

• Hermite functions form an orthonormal basis (for appropriate function spaces, here:
L2(R)) of eigenfunctions of F .

•

Theorem 7 (Plancherel’s Theorem). The Fourier transform is unitary and an
isometry in L2(R): ∫ ∞

−∞
f(x)ḡ(x)dx =

1

2π

∫ ∞
−∞

f̂(k)ĝ(k)dk. (35)

• If we call
〈h〉0,ξ =

∫ ∞
−∞

h(ξ)ξ2h̄(ξ)dξ (36)

the dispersion of h(ξ) around 0, we can formulate an uncertainty principle:

〈h〉0,x〈F [h]〉0,k ≥
1

4
. (37)

24A good introduction to this can be found in the first sections of chapter 3 in [LM94]. The rest of the
book can be quite scary, but this introduction is really nice. Also, I love the abbreviation ΨDO for
‘pseudo-differential operator’.
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1.3 Complex Analysis 1 MATHEMATICS

This can be generalized by defining

〈h〉a,ξ =

∫ ∞
−∞

h(ξ)(ξ − a)2h̄(ξ)dξ, (38)

and if we then take the average x̄ to be a, we can link this to the familiar

〈x2〉 = Var(x) + x̄2. (39)

Apart from the physical constant ~, this is the source of Heisenberg’s uncertainty
principle. So from a mathematical point of view this principle is just an aspect of x
and k being Fourier pairs. Similar results hold in signal processing, electrodynam-
ics and any other physical theory using Fourier pairs! A proof (with a different
definition of the Fourier transform!) can be found in [Pin02], p.131ff.

• If we use δ-distributions we can link the Fourier transform back to Fourier series –
therefore it makes sense of using the same language in both formalisms.

• As already mentioned in 1.2.2, there exist differing conventions regarding the factors
of 1/2π and how to distribute them among F and F−1. So, if you look things up
involving Fourier transforms, make sure you know the convention!

• As an example of the last point and a table of functions and their Fourier trans-
forms, have a look at https://en.wikipedia.org/wiki/Fourier_transform#Tables_
of_important_Fourier_transforms.

Possible places to look at for more information regarding Fourier transforms include,
besides the already linked Wikipedia article, a long list of books on analysis (e.g. [Zor04],
[SG10], [Lan05]), complex analysis (e.g. [Lan99]), distribution theory (e.g. [DK10]),
differential equations (e.g. [Eva10], [Hab04], [Tay11]), electrodynamics (e.g. [Jac75]25),
quantum mechanics (e.g. [Gri12], [CTDL77]) and much, much more. My examples are
just what I could find – there’s definitely more and probably better books for each subject
area listed, at least for introductions to/summaries of Fourier transforms.

1.3.5 Cauchy Principal Value and Kramers-Kronig Relations

The Kramers-Kronig relations26 link the Cauchy principal value distribution P[f ] and
the Dirac distribution δx[f ]. The Cauchy principal value distribution comes in many,
many notations. Examples according to Wikipedia are: PV,P,p.v.,P,

∫
− and more.

25Not necessarily a good reference for Fourier transforms.
26This goes by many names and which you have heard first strongly depends on your background. In

physics, the most common one would be Kramers-Kronig relations, though mathematicians might
have heard it as the Sokhotski-Plemelj27theorem.

27And depending on the language or age of your literature, the transcriptions will be all over the show.
Depending on the literature used the different names are sometimes also associated with slightly
different variations of the same result.
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First, a bit more on the Cauchy principal value. For real integrals with an integrand
f(x) that diverges at c one can sometimes find a value for it by evaluating instead of∫ b

a
f(x)dx

the integral ∫ c−ε

a
f(x)dx+

∫ b

c+ε
f(x)dx. (40)

The Cauchy principal value is then defined as

P
∫ b

a
f(x)dx := lim

ε→0+

∫ c−ε

a
f(x)dx+

∫ b

c+ε
f(x)dx. (41)

For singularities at infinity one uses 1/ε, for several singularities one separates the integral
into more pieces. Important is to keep ε symmetric around the singularity.
In the complex plane, then, one exchanges the 2ε-interval by a ball of radius ε. So

for a contour C with a pole of the integrand at z0 on it, do the following:

1. The contour C is the boundary of a subset S ⊂ C.

2. Take the ball of radius ε centred at z0, let’s call it Bε(z0).

3. Instead of
∫
C =

∫
∂S use

∫
∂S\Bε(z0).

4. Take the limit of this integral. That is the Cauchy principal value.

We shall need the distributional version of the Cauchy principal value. Here, rather
than P, let’s call the Cauchy principal value P( 1x). Why? Because the idea is to take
the singularity from 1/x and see what it does to a function. As a formula:

P
(

1

x

)
[f ] := P

∫ ∞
−∞

f(x)

x
dx. (42)

The Cauchy principal value is then taken by cutting out a ‘ball’ of radius ε at zero.
So, now for the Kramers-Kronig relations:

14
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Kramers-Kronig relations

For ‘sufficiently nice’ functions f(x) we have

lim
ε→0

∫ ∞
−∞

f(x)

x∓ iε
dx = P

∫ ∞
−∞

f(x)

x
dx± iπf(0). (43)

It is common to rewrite this as∫ ∞
−∞

f(x)

x∓ iε
dx = P

∫ ∞
−∞

f(x)

x
dx± iπf(0)

or even ∫ ∞
−∞

f(x)

x+ i0∓
dx = P

∫ ∞
−∞

f(x)

x
dx± iπf(0).

It is easy to shift this from x to x − a and furthermore to realize that this is a
statement about distributions acting on f(x), so that we can summarize the result
in the shorter formula

1

(x− a)∓ iε
= P

(
1

x− a

)
± iπδ(x− a) (44)

=
x− a

(x− a)2 + ε2
± iε

(x− a)2 + ε2
. (45)

A proof of (variations of) this can be found in [Jac75], [DK10] (several different proofs
throughout the book), [SG10] or [Sha14] and many more books.

2 Physics

2.1 Classical (non-relativistic) Mechanics

2.1.1 Harmonic Oscillator(s) – Lagrangian and Hamiltonian Mechanics

1. Find the Lagrangian of a single harmonic oscillator.

2. Write down the Lagrangian for n independent harmonic oscillators.

3. Write down the Lagrangian for the problem at the very beginning of the mathem-
atics section, 1.1.

4. Go through 1.1 again and try to find the connection to the Lagrangian of n in-
dependent harmonic oscillators. Remembering canonical transformations and the
reason for the name ‘normal mode’ should give it already away. . .

5. Remind yourself what a Legendre transformation does and what condition needs
to be fulfilled for it to work. Then, find the corresponding Hamiltonian for the
Lagrangian of a single harmonic oscillator. What should28 be checked before blindly

28Theoretically, at least, though it isn’t always in practice. . .
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performing a Legendre transformation?

6. Find a Hamiltonian for n independent harmonic oscillators.

7. Feel free to check how solving the ODEs changes, depending on whether you use the
Hamiltonian or the Lagrangian approach. I.e., remember the trade-off between or-
der of ODE and number of separate ODEs. Of course, the Lagrangian/Hamiltonian
from the first question here will be the easiest and quickest approach.

Fun with simple Hamiltonians

If you want to see how much you can mangle a given Hamiltonian just with
canonical transformations, have a look at the example from [JS12], p.246f. Using
‘ladder coordinates’a

Q =
mωq + ip√

2mω
, P = iQ∗

and after some work to find a fitting generating function (here: F (q,Q)) for this
particular canonical transformation, you will get the new Hamiltonian

H̃ = −iωQP.

So why did I say ‘mangle’? Try finding a corresponding Lagrangian in these
canonical coordinates. . . . . . just looking at the Hessian should tell you whether
that will work or not.
aAfter all, this is the classical mechanics part – not the quantum mechanics part, where no-one
would be surprised to see ladder operators. . .

2.1.2 Classical Perturbation Theory

A harmonic oscillator of mass m has the potential energy

V =
k

2
x2, (46)

with k being the spring constant. Let’s change this to include a small, cubic correction
term:

V =
k

2
x2 − εCx3, (47)

where C takes care of units. The discussion of this small part I will base on [Kuy03] – I
apologize for using a German reference, but [JS12] is my only English book on classical
mechanics in ‘classical’ presentation29. More or less every classical mechanics book will
discuss polynomial perturbations of the harmonic oscillator in some form, so I hope you
will be able to find something in your favourite book that is easily adapted to the case

29Arnold’s classical mechanics book will not help here. . .
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of a cubic potential. In the case of [JS12], for example, you can find a discussion of the
quartic potential in several sections.
In this section we will skip Lagrangian and Hamiltonian mechanics and start straight

from Newtons second law, using
F = −∇V.

1. From the things given above, derive the equations of motion for the systems as

ẍ+
k

m
x− ε3C

m
x2 = 0. (48)

2. Suppose, we can write our system like so:

x(t) = x0(t) + εx1(t) + ε2x2(t) + . . . (49)

This will be the starting point of our perturbation theory. It suffices to impose the
initial conditions on x0(t) alone, i.e.

xi = 0, ẋi = 0 ∀i 6= 0. (50)

Show that – should this ansatz work – reduces in first order of ε to(
ẍ+

k

m
x0

)
+ ε

(
ẍ1 +

k

m
x1 − 3

C

m
x20

)
+O(ε2) = 0. (51)

3. For the initial conditions of elongation x(0) = A with no initial velocity, solve the
zero-th order to get

x0(t) = A cos

(√
k

m
t

)
(52)

just as for the harmonic oscillator and as to be expected.

4. Now get the first order solution

x1(t) = a sin

(√
k

m
t

)
+ b cos

(√
k

m
t

)
+
A2C

2k

(
3− cos

(
2

√
k

m
t

))
. (53)

The a and b are integration constants. If you run into trigonometric troubles to
reproduce the factor of 2 in the argument of the last cosine, think a bit about trig
identities. . .

5. Impose the boundary conditions on x1(t) to get

a = 0, b = −A
2C

k
. (54)

17



2.1 Classical (non-relativistic) Mechanics 2 PHYSICS

6. Now look at the full (first-order) solution

x(t) = x0(t) + εx1(t).

What you can see here is that you get overtones. If you were to go to higher
orders, you would get – besides the overtone with frequency30 2

√
k
m =: 2ω0 – also

frequencies of nω0 for any natural number n ≥ 1. If you add driving forces, you
will get them even in this order!

7. As a small extension of just doing perturbation theory, let’s look at the time-
averaged position

x̄ =
1

T

∫ T

0
x(t)dt, (55)

where

T =
1

ω0
=

√
m

k
.

This should turn out to be

x̄ = ε
3

2

A2C

k
= ε

3

2

A2Cm

ω2
0

, (56)

which is obviously different from the behaviour of the unperturbed harmonic oscil-
lator.

8. What would happen if we were to go to higher orders in perturbation theory? To
save time and space, let’s just summarize one of the exercises given in [Kuy03]:
You will find that the base frequency ω and its overtones change compared to ω0.
It will look like

ω2 = ω2
0

(
1−O(ε2)

)
. (57)

In order to get this result, the perturbation must not get too large. If it is, the
unboundedness of the cubic potential will give us a headache. Also, as the ODE
are not linear anymore, there will not be any kind of superposition principle as
with linear ODE.

9. If we wanted to do Lagrangian or Hamiltonian mechanics, the former would receive
no big difference as our second order ODE would be the same. For the Hamiltonian
case, note that the perturbing potential still is time-independent, so the Hamilto-
nian is just

H = T + V.

Neither would the canonical momentum change.

30I apologize, but here ω does not refer to angular frequency. It is the ordinary, or temporal frequency.
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10. Let us reiterate the unboundedness:

Unboundedness of cubic potentials

Already in second order we get a need to keep the perturbation small. This
becomes even more apparent in ever higher orders. Even without perturb-
ation theory this can be seen: Were we to look at large negative values of
x the resulting force of the cubic potential would drive the solution to ever
smaller values of x. The solution will diverge.

The problem of vanishing superposition principles obviously holds for more general po-
tentials than a cubic one. If you introduce driving forces with driving frequency Ω in
these more general cases31, you can get funky behaviour like discontinuous behaviour of
the system frequency ω as you continuously change Ω. But let’s stop here.

2.2 Special Relativity

2.2.1 Lorentz Invariance and Index Magic

Warning

This part will be dense. Play with it around if you have trouble with it. Manipu-
lating indices is an incredibly useful skill to have and I will try to give away as much
insight in as little pages as possible. Which (sadly?) means that I occasionally
have to mix physics and maths lingo.

Without much ado, let us step right into the heart of it.

• Minkowski space M is flat 4D space with the difference from Euclidean 4D space
that its metric is not diag(1,1,1,1) but η = diag(−1,1,1,1) which is called the
Minkowski metric. As in Euclidean spaces, this of course only is true for Cartesian
coordinates. You can turn this constant, but non-diagonal (‘null-coordinates’),
non-constant but diagonal (spherical) or neither constant nor diagonal (null and
spherical).

• The use of Minkowski space is to provide a unified treatment of space and time by
setting its coordinates up in the following way:

X =


x0

x1

x2

x3

 =


ct
x
y
z

 ∈M. (58)

• Points in Minkowski space are called ‘events’ as they have a time coordinate telling
us when they happen and space-coordinates telling us where.

31E.g. a quartic potential ∝ x4.
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• I will use the index notation of [Sre11] and for the moment not be too concerned
with factors of c, the speed of light in vacuum (though occasionally I might throw
it in for good measure). As before, the Einstein sum convention will be used, see
footnote 16. So let us collect bits about this:

H

Here Be Dragon‘!

If the following mathematical description is confusing technobabble for
you, either ignore this point or look it up in [Gou13], [Nab10] or the
first bits of [Kri01].

I’ll make this point first mathematically then physically.

Maths: Events X in M can be identified with points in the tangent space
TXM of M by specifying an origin for the affine (think Euclidean vector space)
coordinates on M. Physically this corresponds to the choice of an inertial
observer. More on this below. Again, don’t be afraid of this differential
geometric hullabaloo.

Physics: Put differently, it distinguishes between events and how events
move. In classical mechanics this corresponds to position and velocity/momentum
– obviously, they are in different spaces, as ~x+~v looks just revolting after a few
semesters of physics. However, if we take a point X and the origin 0 ∈M and
then look at their distance 0X it makes sense that this will be proportional
to any velocity taking us from 0 to X.

H I will, as long as we are dealing with special relativity, be very nonchalant
with the difference between things like 0X and X – that way we can easily
adapt the language below as we need.

H Events (in the sense of X = 0X, points in Minkowski space) and lines between
events XY are called contravariant vectors (math-lingo: they are elements of
the tangent space of some event, i.e. of some observer going through that
event) and written in components with an index up like so:

X = (xµ)µ=0,1,2,3 . (59)

Greek indices run from 0 to 3, zero denoting the time-component, the others
spatial components. It is also quite common to use Latin indices to run from
1 to 3, i.e. label only spatial components.

H The corresponding elements of the dual space/the cotangent space are called
covariant vectors and have an index down like so:

p = (pµ)µ=0,1,2,3 . (60)

H As a common abuse of notation vectors/covectors (i.e. contravariant/covariant
vectors) are frequently identified with their components.
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H A quick intro to tensors: Scalars are rank-0 tensors. Vectors are rank-1 tensors.
Matrices are rank-2 tensors. So far it is just linear algebra. Matrix multiplic-
ation of a vector then reads

xµ = Aµ
νyν ,

while scalar products with a bilinear, symmetric, positive definite matrix M
would look like so:

xµMµνy
ν = s ∈ R.

Now what’s with all the up and down of indices? For vectors I already covered
that. But with the sum convention at hand, we can make sense of it in a more
general case: Anything with n indices up and m indices down will be a linear
mapping that takes n covectors/covariant vectors andm vectors/contravariant
vectors and spit out a scalar, i.e. a real number. This linear mappings are
called tensors of rank (n,m). Anything with a total number of 2 indices
can be represented as a matrix. Anything with one as a ‘vector’. It is common
to denote column vectors as contravariant vectors and row vectors as covariant
vectors. For matrices it becomes irksome to distinguish one with two indices
up from one with two indices down or even one up, one down. . . All the more
reason to forget about the matrix representation and head straight to index
notation and general tensors.

H That being said, there is an important thing that’s easiest explained with
matrices: Index placement is important! This can be made visible by trans-
posing matrices:

ηTµν = ηνµ, Aµν
T = Aν

µ.

Why? Transposing changes which argument of the bilinear map goes where,
e.g. AT (X,Y ) = A(Y,X). The same goes for more general tensors. So even
though it gets lost in calling something, say, a (1,2) tensor, the following are
different:

Aµν
α 6= Aµαν .

Why this care? Often one finds the abuse of notation of writing such a tensor
as

Aµαν ,

which utterly obscures what exactly goes where. While this is kinda tolerable
in quick notes or as a conscious abuse of notation, it can occasionally make
translating different notations unnecessarily difficult (e.g. index-free to index-
based).

H Using the just introduced abuse of notation, we can then write the Minkowski
metric as

ηµν = diag(−1,1,1,1). (61)

H As things with indices are just heaps of real numbers we can commute – the im-
plicit sums of the Einstein convention will take care of the non-commutativity
of matrix products or even tensor products.

21



2.2 Special Relativity 2 PHYSICS

• If we have two events X,Y ∈M, the vectorial difference between them tells us their
causal relation:

H If
η(X,X) = ηµνX

µXν < 0,

we call X time-like.

H If
η(X,X) = ηµνX

µXν > 0,

we call X space-like.

H If
η(X,X) = ηµνX

µXν = 0,

we call X light-like or null.

H Only two events X,Y such that XY is light-like or time-like can influence each
other. Only time-like related events can be reached by a massive particle.

H The set of events separated light-like from an event X is called the light-cone
of X.

• An isometry L is a linear transformation of Minkowski space such that

∀X,Y ∈M : η(X,Y ) = η(LX,LY ). (62)

• In index notation (62) reads for the homogeneous Lorentz group:

∀Xµ, Y µ : ηµνX
µY ν = ηµνL

µ
αX

αLνβY
β.

Exercise: Try to rephrase this without explicitly mentioning X or Y , both in
index notation and index-free.

• As linear transformations the isometries form a group called the Poincaré group,
sometimes also named the inhomogeneous Lorentz group. Note: Here it is actually
important to differentiate between X and 0X – if we add a constant A to the
former, we will change the metric η(X,X) 6= η(X + A,X + A), but on the other
hand (thanks to Minkowski space having an addition of elements) η(0X,0X) =
η((0 +A)(X +A),(0 +A)(X +A)).

• Nomenclature: The subgroup with translations by A vanishing is called the
Lorentz group O(3,1) and contains as subgroup the rotations of 3-space while
keeping time constant. O(3,1) has four connected components and the component
containing the identity element is called the proper, orthochronous Lorentz group.
Orthochronous means, the transformation does not interchange past and future.
As with the O(n) groups, we call the elements with determinant +1 members of
SO(3,1).
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• Sign convention! Some people prefer making space all negative and time positive
in the Minkowski metric. This also leads to things like SO(1,3) instead of SO(3,1)
and different definitions for space-like and time-like. Neither am I a fan of this
different convention, nor is this the one used in [Sre11], so we will stick to the
sign being in the time-component of the metric. The convention − + ++ goes
by the names ‘(general) relativity convention’, ‘mostly pluses’, ‘Pauli convention’,
‘East coast convention’, ‘space-like convention’. The opposite one has the names
particle physics convention, mostly minuses, Landau-Lifshitz convention, time-like
convention and West coast convention going. Obviously, East and West coast of the
US already differed significantly before Bad Boy Records and Death Row Records.

• Besides the rotations in 3D, another famous element of (homogeneous) Lorentz
transformations are the so called boosts corresponding to a mere change of relative
velocity between to observers. If the boost is in x-direction it has the form

γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 , (63)

where γ = 1√
1− v2

c2

and β = v2

c2
. While two boosts in the same direction give another

boost and the relativistic addition law for velocities, two boost in different directions
are a boost AND a rotation. If you set γ = cosh ξ and βγ = sinh ξ, you will realize
that the law of addition of velocities is just a hyperbolic addition theorem. And
please convince yourself that the link between (63) and the hyperbolic functions
makes sense.

• Scalar quantities that don’t change value under a Lorentz transformation are called
Lorentz scalars. In general, a (p,q)-tensor is called Lorentz covariant if it transform
under Lorentz transformations in the following way:

Tµ1···µpν1···νq 7→ Lµ1α1 · · ·LµpαpLβ1ν1 · · ·LβqνqTα1···αp
β1···βq . (64)

• As the metric η is obviously invertible, we can write down an inverse for it in
index notation as ηµν . Matrix-multiplying this inverse with η itself has to give the
identity matrix. Let’s see how this works:

ηµνηνα = δµα ⇐⇒ η−1η = 1.

Now why the index placement like this? The identity matrix has to turn a vector
into itself, but is a second-rank tensor, so it has to be of type (1,1). Then the LHS
of the last equation is the way to go to write down an inverse matrix for ηµν .

• The metric ηµν provides us with a unique mapping between space and dual space
– or less technical, with a way to raise and lower indices. So if we start with a
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vector V µ or a covector ωµ we can turn them into a covector or vector respectively
by setting

Vµ = ηµνV
ν , and ωµ = ηµνων . (65)

As an example, let us look at the coordinate vector xµ = (ct,x1,x2,x3)T and see
what it looks like as a covector:

xµ = ηµνx
ν = (−ct,~xT ). (66)

Note two things: First of all, the different sign in the zero-th component. Second,
how the T for transpose changed position.

• Derivatives can be given indices, too!

∂µ :=
(
∂
∂x0

∂
∂x1

∂
∂x2

∂
∂x3

)
(67)

There are basically two ways to see why the index has to be down: Either, you can
prove it by checking how it behaves under a Lorentz transformation (Exercise!),
or you can handwave and just save the mnemonic that it’s a bit like fractions. If
you divide something by a fraction the numerator becomes the denominator and
vice versa, and then just think of the index up as a numerator and the index down
as a denominator32.

• Two other important things with derivatives are the one with raised indices

∂µ = ηµν∂µ =



− ∂

∂x0

∂

∂x1

∂

∂x2

∂

∂x3


(68)

and the D’Alembertian
� := ∂µ∂

µ = −∂2t +∆x. (69)
Note how the sign in the time-component appears this time in the contravariant
version ∂µ – for xµ it appeared in the covariant one – and that ∂µ∂µ gives just the
wave operator.

You can find more on this in maaaaaaany books. Both in mathematics (differential geo-
metry, linear algebra, sometimes analysis, . . . ) and physics (electrodynamics, relativity,
particle physics, mechanics, . . . – all both theoretical and experimental), sometimes more,
sometimes less depending on the corresponding authors’ preferences. If you found my
fairly mathematical and very short summary of results rather scary, try looking into your
favourite book covering relativity and try to match it with what I mention. Feel free to
fill in gaps in my exposition – this is by no means a complete summary of results.
32It’s silly, but that always helped me remember this in the beginning.
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2.2.2 Kinematics and Mandelstam variables

Having set all of this up, we are now in the position to do a bit more physics.

• A massive particle has an associated four-momentum pµ given by

pµ :=
(
−E

c px py pz
)

(70)

or equivalently

pµ =

(
E
c
p

)
,

with
pµpµ = −m2c2. (71)

The minus sign on the right hand side is the reason why some people prefer η =
diag(1,− 1,− 1,− 1). I am not one of them.

• From equations (70) and (71) we also can get the expansion in v/c

E = mc2
(

1 +
1

2

v2

c2
+

3

8

v4

c4
+ . . .

)
, (72)

which, for example, allows to calculate relativistic correction to quantum mechan-
ical results via perturbation theory. I shall not do that here.

• A massless particle, on the other hand, has a four-momentum

pµ :=
(
−E

c px py pz
)
, (73)

but this time such that
E = |p| c. (74)

Massless particles therefore have a null-vector as four-momentum.

• If we now have any kind of collision or decay or reaction with n in-going particles
and m out-going ones, the energy conservation and momentum conservation of
Newtonian kinematics is expressed as energy-momentum-conservation in terms of
four-vectors or four-covectors:

n∑
i=1

pin,i
µ pµin,i =

m∑
i=1

pout,i
µ pµout,i (75)

and
n∑
i=1

pµin,i =
m∑
i=1

pµout,i. (76)

• A rough classification of different n and m (adapted from [Gou13], p.294) would
be

25



2.3 Electrodynamics 2 PHYSICS

H De-excitation or decay: n = 1, m ≥ 2

H Elastic collision: n = m = 2 and min
i = mout

i – the reason for not just saying
n = m is that you normally do not have interactions between more than two
particles on a fundamental level. That is more a matter of experimental fact
than of mathematical consideration and if I remember correctly there are at
least ‘effective’ three-body-interactions.

H Annihilation/Inelastic collision/fusion: n = 2 but m > 0, ‘as long as some-
thing different comes out’ (see me wave hands vigorously).

• Other invariants that are incredibly important for describing n = m = 2 are the
so-called Mandelstam variables:

H s := −(p1 + p2)
µ(p1 + p2)µ = −(p′1 + p′2)

µ(p′1 + p′2)µ

H t := −(p1 − p′1)µ(p1 − p′1)µ = −(p2 − p′2)µ(p2 − p′2)µ
H u := −(p1 − p′2)µ(p1 − p′2)µ = −(p2 − p′1)µ(p2 − p′1)µ

s has the interpretation of the total mass squared of the system.

• Exercise: You can actually check that

s+ t+ u = c2(m2
1 +m2

2 +m′21 +m′22 ). (77)

This is a good exercise to do.

• Lastly, there are two common choices of frames to do calculations in. Their useful-
ness depends on the corresponding physical situation at hand.

H The centre-of-momentum frame (CM or COM frame) where

p1 + p2 = 0 = p′1 + p′2, (78)

i.e. the two particles have equal and opposite three momenta before and, due
to (76), also after the collision.

H The lab frame where one of the two particles is initially at rest.

More on this can be found in your favourite particle/nuclear physics textbook (e.g.
[HM84], [Gri04] or [Mar06]33) or textbooks on special relativity (e.g. [Gou13]).

2.3 Electrodynamics

For this section, I will follow the units used in [Sre11], that is Heaviside-Lorentz and
(sometimes) c = 1.

33These books are either thoroughly outdated, out-of-print or at least only old editions. Sorry about
that. [HM84] I like very much despite its age, but the other ones probably benefit very much from a
more modern edition as they are closer to current, experimental data, like the Higgs boson. But the
relativistic kinematics don’t change – so all are perfectly good references for this section.
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2.3.1 3D versus 4D

First, let us recap the basics of electrodynamics – the Maxwell equations.

1. The Maxwell equations in vacuum (with sources!) are:

∇ ·E = ρ, (79)

∇×B− Ė = J, (80)

∇×E + Ḃ = 0, (81)
∇ ·B = 0. (82)

2. While the symmetry group of the Maxwell equations is the Lorentz group, this is
far from obvious in the three-dimensional notation. Therefore, it is beneficial to
rewrite this in a manifestly four-dimensional way:

Aµ =

(
φ
A

)
, (83)

Jµ =

(
ρ
J

)
, (84)

and lastly, collect the E- and B-field in an anti-symmetric second-rank tensor Fµν

like so:

F ij = εijkBk, (85)

F 0i =
Ei

c
. (86)

So, if we were to write the Fµν as a matrix, we’d get
0 −Ex

c −Ey
c −Ez

c
Ex
c 0 −Bz By
Ey
c Bz 0 −Bx
Ez
c −By Bx 0

 (87)

Remember for this that for the 3D vectors Ei = Ei as no signs come into play from
the Minkowski metric used to raise and lower indices.

3. Using this rephrasing, we can rewrite the Maxwell equations in the more compact
form

∂µF
µν = Jν , εµνκλ∂

νF κλ. (88)

2.3.2 Gauge Freedom and Solving Maxwell Equations

1. Solving the homogeneous equations (81) and (82) gives rise to the electrostatic
potential φ and the vector potential A, such that

E = −∇φ− Ȧ, (89)
B = ∇×A. (90)
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2. In 4D, we can rearrange this as

Aµ =

(
φ
A

)
. (91)

This also gives us the chance to make the definition of Fµν more transparent:

Fµν = ∂µAν − ∂νAµ. (92)

3. From this follows immediately that

∂µJ
µ = 0, (93)

which rewritten in 3D is nothing but the charge conservation/continuity equation.
(Exercise: Check this!)

4. Now that we have introduced the gauge fields, we have to mention gauge freedom.
While Aµ (or φ and A) uniquely specify the values of Fµν (or E and B), the other
way around doesn’t work. Because changing

Aµ → Aµ − ∂µχ, (94)

where χ is some real-valued function, gives rise to the same Fµν as the original Aµ

did. Correspondingly, in 3D the changes

φ→ φ+ χ̇, A→ A−∇χ (95)

give rise to the same E and B as the original φ and A.

5. Now the trick is, to choose χ cleverly enough to simplify solving the Maxwell
equations.

6. Exercise: Show that a convenient choice of gauge χ can be found so that the the
inhomogeneous Maxwell equation is turned into

�Aµ = Jµ. (96)

This choice of χ is the Lorenz gauge34. Make sure that this choice can always be
made.

7. In Lorenz gauge, the solution to the inhomogeneous Maxwell equations can be given
by the retarded/advanced potentials:

Aµret/adv(t,r) =
1

4π

∫
Jµ(t∓ |r−r′|/c, r′)

|r− r′|
d3r′, (97)

where the retarded solution describes how the past influenced an observer at po-
sition r and the advanced solution how a field at r will propagate to other points
in space. This is actually a direct application of the Green’s functions described in
1.2.3, now only slightly modified to include the speed limit of c imposed by special
relativity.

34Lorenz. Not Lorentz.
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8. The Lagrangian density of electrodynamics is

L = −1

4
FµνFµν + JµAµ. (98)

As an exercise you can try to convert this into a 3D-expression.

9. To get the Hamiltonian of a field theory, one needs to have a canonical momentum
∂L
∂0Aµ

for every field degree of freedom Aµ. Otherwise, our Hessian condition for
the Legendre transformation will break down. Now take a look again at Fµν which
appears in our Lagrangian. Can this work?35

2.4 Quantum Mechanics

Quick heads-up: I will (mostly) set ~ = 1. For a good introduction on this abuse
of notation I recommend the notes Jaffe wrote on this: https://stuff.mit.edu/afs/
athena/course/8/8.06/spring08/handouts/units.pdf.

2.4.1 A Review of Dirac Notation

Dirac’s notation for (generalized) states in quantum theory is tremendously useful, so
let’s quickly recap it. As long as our Hilbert space H is just finite-dimensional, we can
salvage a lot of our understanding of finite vector spaces. There’s the space H and its
dual space H∗. Since a Hilbert space is a complete inner product space, we can easily
go from one to the other, construct orthonormal bases and the like. Let’s call the inner
product 〈·,·〉 An element of our Hilbert space would in Dirac notation be written with a
‘ket’, like so: |Ψ〉. Its dual is the corresponding 〈Ψ | called a ‘bra’. For two states |Φ〉 , |Ψ〉
we write their inner product in Dirac notation as 〈Ψ |Φ〉 = 〈|Ψ〉 , |Ψ〉〉, called a braket.
Therefore, the whole Dirac notation is also known as ‘braket-notation’36. Remember that
for a complex Hilbert space, the inner product is only sesquilinear, i.e. 〈Ψ |Φ〉 = 〈Φ|Ψ〉,
where the overline denotes complex conjugation.
While this all works well and nice also for the naive elements of, say, L2, the whole

things crumbles a bit if you take plane waves as states37. They would not be square
integrable over the whole Rn. There are technical ways (called ‘rigged Hilbert spaces’,
see [Bö93]38, [de 05] or [dBG02]) to make this work – but since there are, we will take
the stance that what we do works, so why go down the rabbit hole?
As a result, the position eigenstates can fulfil orthogonality if one extends the ortho-

gonality relation for two normal states |i〉 , |j〉 s.t. 〈i|j〉 = δij to the following:

〈x|y〉 = δ(x− y). (99)
35Hint:

Look at F
µν

= ∂
µ
A
ν
− ∂

ν
A
µ
– what contributes to the four needed canonical momenta?.

36Some people cringe at this very punny [sic!] use of English due to Dirac. I like it.
37L2, like all Hilbert spaces, has the beautiful property that its dual is isomorphic to L2 – thanks to

Riesz’ representation theorem. Different function spaces might not be ‘reflexive’, i.e. isomorphic to
their dual. If you encounter a PDE whose solution is not easily put into a Hilbert space, you are in
for a hard time.

38Depending on where you look, you will find this author’s name as both ‘Bohm’ and ‘Böhm’.
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And as position and momentum are Fourier pairs, we can nicely write Fourier trans-
forms39:

〈x|k〉 = eikx ⇐⇒ 〈k|x〉 = e−ikx. (100)

Note that our convention for the Fourier transform means that∫
eik·xdnx = (2π)nδn(k).

Operators are inserted between bra and ket, e.g. as 〈Ψ |A|Φ〉. And while a braket itself
is a complex number,

〈Ψ |Φ〉 ∈ C,

a ketbra will be an operator. This makes sense insofar as a bra is from the dual space,
a ket from the space itself, and therefore the bra is a map taking Hilbert space elements
to complex numbers. In the braket the ket will be the argument of the operator given
by the bra.
So where does the ketbra |A〉 〈B| as an operator stem from? Think of it as a ‘tensor’

– you need to hit it from the left with a bra 〈A′| and from the right with a ket |B′〉
to get the multiplication of two brakets, i.e. a multiplication of two complex numbers:
〈A′|A〉 · 〈B|B′〉. So the ketbra is a map H∗ ×H → C.
A particularly useful operator in ketbra notation is the projection operator:

|Ψ〉 〈Ψ | . (101)

This operator projects any state |Φ〉 onto the state |Ψ〉 and therefore is perfect to expand
states in a given basis. Let’s say we have a (normalized) basis of states {|n〉}n∈I , with
I some index set. It does not matter whether the index set is finite, countable or even
uncountable, so in order to sum over it, let’s use the fancy symbol ∑∫ . Then any state
|Ψ〉 can be written with our projection operators as

|Ψ〉 =
∑∫
n

|n〉 〈n|Ψ〉︸ ︷︷ ︸
=:Ψn∈C

. (102)

If you have not used Dirac’s notation so far, have a close look at the next few sections
because I will employ this notation heavily.

2.4.2 Ladder Operators

I will not carefully derive the ladder operators discussed in this section. Rather, I redirect
you for that to standard quantum mechanics texts like [Gri12], [Sha14], [Wei13], [Rae16]
or [Boh89]. However, I will give you a nice one-sentence-catch-all:

Ladder operators enable you to go from one state labelled by some quantum num-
ber with value n to a different, orthogonal state by changing only the value of that
quantum number by ±1.

39I hope I correctly adapted to the normalization convention for Fourier transforms in [Sre11]. . .
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An interesting application of ladder operators to the hydrogen atom and the operator
corresponding to the Runge-Lenz vector from classical mechanics can be found in [Sha14],
p.422f.

Harmonic Oscillator

The harmonic oscillator is a particularly important and also simple application of ladder
operators. This bit is incredibly important, so if you want to do some exercises, start
here! The Hamiltonian in this case is

Ĥ =
p̂2

2m
+
mω2x̂2

2
. (103)

However, introducing ladder operators significantly simplifies this Hamiltonian.

1. In this case, the ladder operators made out of x̂ and p̂ are given by

â :=

√
mω

2~
(x̂+

i

mω
p̂), (104)

â† =

√
mω

2~
(x̂− i

mω
p̂), (105)

or, inverted (Exercise!),

x̂ =

√
~

2mω
(â† + â), (106)

p̂ = i

√
~mω

2
(â† − â). (107)

2. They fulfil the canonical commutation relations (Exercise!):

[â,â†] = 1. (108)

3. Written in â and â†, the Hamiltonian turns into (Exercise!)

Ĥ = ~ω
(
â†â+

1

2

)
= ~ω

(
ââ† − 1

2

)
. (109)

4. From (108) and (109) one gets (Exercise!)

[â,Ĥ] = â, (110)

and
[â†,Ĥ] = −â†. (111)
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5. Eigenstates of the Hamiltonian, i.e. energy eigenstates, are now written as |n〉 , n ∈
N0 and have energy (n + 1

2)~ω. We assume that they are normalized. Using
the commutation relations between Ĥ and the ladder operators we can show that
they generate new eigenfunctions (Exercise!). Also, since it is easy to show that
eigenvalues of Ĥ have to be non-negative, we know that there has to be a smallest
value which then justifies our notation.

6. It now follows from taking normalized eigenstates that (Exercise!):

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 . (112)

More can be found in your favourite quantum mechanics textbook (say, [Sha14] or
[Rae16]) or even just Wikipedia.

Angular Momentum

In the case of angular momentum, look at the four operators Lx, Ly, Lz and L2. While
L2 = L2

x + L2
y + L2

z commutes with the other three, they fulfil among each other

[Ll,Lm] = i~εlmnLn. (113)

It is possible to choose simultaneous eigenstates of one Ln and L2 but not for two
different Ll and Lm. Conventionally, one chooses Lz and L2 to label eigenstates of
angular momentum. Then one can built ladder operators out of the remaining two:

L± = Lx ± iLy. (114)

In the case of different bases for a state space of added angular momenta these methods
provide the way to calculate Clebsch-Gordan coefficients – fancy words for a change of
basis.

2.4.3 A Smorgasbord of Perturbation Theory

In this section, I will collect a variety of results both from time-independent and time-
dependent perturbation theory in non-relativistic quantum mechanics. I also include an
example of applying time-independent perturbation theory to the harmonic oscillator.

Time-independent Perturbation Theory

Assuming we have an unperturbed Hamiltonian H0 whose (non-degenerate) energy ei-
genstates we know40, let’s look at a more complicated problem with Hamiltonian

H = H0 + εH1. (115)
40(a) I will not bother with non-degeneracy, but it can be solved by carefully choosing the basis for the

given Hilbert space. (b) We want H0 to be self-adjoint, so its eigenstates do form a basis for our
Hilbert space. We don’t care at this point about the rigorous way to achieve this and just assume
that H0 and the Hilbert space match up.
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There are different preferences how to do the expansion now. I prefer the way it is done
on the Wikipedia41: Take ε ∈ [0,1]. That way you have:

• ε to expand in.

• A continuous transition from full system to unperturbed system.

• For a given H1 a simpler handle to check convergence radii42.

The way to go is to expand both the energy eigenstates and the energy of the full system
H in ε:

|n〉 = |n(0)〉+ ε |n(1)〉+ ε2 |n(0)〉+ . . . , (116)

En = E(0)
n + εE(1)

n + ε2E(2)
n + . . . (117)

The (n) gives the n-th term of a Taylor series in ε for E or |n〉, respectively.
After a bit of calculation you get that the first-order correction to the energy eigenstate
|n(0)〉 will be

|n(1)〉 =
∑
k 6=n

〈k(0)|H1|n(0)〉
E

(0)
n − E(0)

k

|k(0)〉 , (118)

while the first-order energy correction is simply

E(1)
n = 〈n(0)|H1|n(0)〉 . (119)

Combining (119) and (118) we can get the second-order correction to the energy E(2) as

E(2)
n = 〈n(0)|H1|n(1)〉 =

∑
k 6=n

∣∣〈k(0)|H1|n(0)〉
∣∣2

E
(0)
n − E(0)

k

. (120)

Let’s not go through (other) higher orders or degenerate perturbation theory, even
though the latter is definitely physically incredibly important. Rather, let’s have a look
at an example. If you want to rehearse your knowledge of the rest of perturbation
theory, go to your favourite book on quantum mechanics. Just a few examples would be,
again: [Gri12], [Sha14], [Flü08], [Wei13], [Rae16], [Boh89] or even the Wikipedia article
cited in footnote 41.

Perturbing the Harmonic Oscillator with a Cubic Potential

This example is adapted from [FW04] and [Flü93]. As much of my personal library on
QM happens to be in German, I would like to apologize for having to reference German
books, but at least for the latter I know of an English translation, [Flü08], which – as it
happens – contains a lot more than my edition does.
41https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)

#Time-independent_perturbation_theory
42Guess on my side. Not that I would want to do that.
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So, here we will take
H1 = Cx̂3, (121)

and use C to turn the units into something sensible – after all, our definition of ε didn’t
have any. Now, before we start there is an important thing to note straight away: While
H0, the harmonic oscillator, has a energy spectrum that is bounded from below we cannot
expect this to be the case for the perturbed Hamiltonian H. After all, just looking at the
classical case discussed in 2.1.2, no matter how small εC,H1 will makeH unbounded from
below. The perturbation series will not converge and there always is a small probability
that the state will tunnel through the introduced potential barrier and ‘go to’ energy
−∞. The only thing we can do is to choose εC small enough that this tunnelling
probability is low enough to expect at least on physical grounds a sensible result even
from perturbation theory. Making sense of this physical intuition mathematically is a
lot harder and apparently still ongoing research ( [FS14]). For a discussion of hardcore
mathematics to quartic perturbations, see [BO99].
So, how to go about this?

1. In order to calculate (119) and (118), we will make use of the ladder operators â
and â† via equation (106). So, do that and try to find out which states |n〉 can go
to which states |m〉 under the perturbation43.

2. For the first energy correction it is simple. Think about which states could be
reached and what that means for equation (119). . .

3. For the correction |n(1)〉 you then get

|n(1)〉 =
C

~ω

(
~

2mω

)3/2
[
−1

3

√
(n+ 3)!

n!
|(n+ 3)(0)〉 − 3(n+ 1)

3/2 |(n+ 1)(0)〉

+3n
3/2 |(n− 1)(0)〉+

1

3

√
n!

(n− 3)!
|(n− 3)(0)〉

]
.

(122)

4. So if we are interested in any changes in the energy, at all, we better go one order
higher44. Using equation (120) we then get after a not too long calculation:

E(2)
n = − ~2C2

8m3ω

[
30n2 + 30n+ 11

]
. (123)

Please note, that written like this the order of ε is not explicitly visible. This finishes
our little example.

43Hint:
You should get m = n± 1 or m = n± 3.

44The only reason I bothered with a second order result. . .
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Time-dependent Perturbation Theory

Here now a few famous results for time-dependent perturbations. I will not develop
this in all detail and rather skip straight to the results – this notes are (too?) long, as
they are. . . Your favourite quantum mechanics books will help you again, say [Rae16],
[Sha14], [Gri12], [CTDL77], [Wei13], [Boh89] or [Bö93]. In the following, I will denote
the different pictures used by superscripts S, H or I for Schrödinger, Heisenberg and
Interaction picture, respectively.

• First a quick reminder for the different pictures of quantum mechanics. In the
Schrödinger picture, the state vectors carry all the time-dependence and obey the
Schrödinger equation

i~
d

dt
|Ψ〉 = HS |Ψ〉 (124)

and operators in it are time-independent. In the Heisenberg picture, we push the
time-evolution operator exp(−iHt/~) onto the time-independent Schrödinger picture
operators AS, turning them into time-dependent Heisenberg picture operators

AH(t) = e
iHSt/~ASe−

iHSt/~. (125)

The benefit is that our states are now time-independent. The Schrödinger equa-
tion describing the time-dependence of states now is exchanged for the Heisenberg
equation describing the time-evolution of operators:

d

dt
AH(t) =

∂

∂t
AH(t) +

i

~
[HH(t), AH(t)]. (126)

Note that you can easily find things that don’t follow this simple rule-of-thumb
which things are time-dependent in which picture.

• Say, the system is described by H = H0 +H1, where now H1 is a time-dependent
perturbation. The interaction picture (sometimes also called the Dirac picture)
is used to get rid of ‘boring’ bits of time-evolution, i.e. the time-evolution of the
unperturbed system described by the HamiltonianH0. In order to achieve that, one
pushes the time-evolution of H0 onto the operators. Then the interaction picture
Hamiltonian is

HI
1 := e

iH0t/~HS
1 e
−iH0t/~. (127)

Then the states obey the (for time-dependent perturbation theory) more useful
Schrödinger equation

i~
d

dt
|Ψ〉 = HI

1 |Ψ I〉 . (128)

• The solution of this new Schrödinger equation can formally be done by introducing
the time-ordered exponential T exp:

|Ψ I(t)〉 = T exp

(
− i
~

∫ t

t0

HI(t′)dt′
)
|Ψ I(t0)〉 =: U(t0,t) |Ψ I(t0)〉 , (129)

where U(t0,t) is the time-evolution operator.
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• Here,

TA(t1)A(t2) =

{
A(t1)A(t2) t1 > t2

A(t2)A(t1) t2 > t1
. (130)

For t1 = t2 it doesn’t matter what you choose.

• With this, the time-ordered exponential T exp can be developed in the Dyson series:

T exp

(
− i
~

∫ t

t0

H(t′)dt′
)

= 1− i

~

∫ t

t0

H(t′)dt′ − 1

~2

∫ t

t0

∫ t′

t0

H(t′)H(t′′)dt′′dt′ + . . . ,

(131)
where the 1/n! from the exponential get cancelled by over-counting of the integrals.
Also, I omitted the picture-superscripts for the interaction picture.

• The transition probability per time Γi→f of a transition from a given initial state
|i〉 to a final state |f〉 in an energy continuum is given by Fermi’s Golden Rule:

Γi→f =
2π

~
|〈f |H1|i〉|2 ρ(Ef ). (132)

Here, |f〉 and |i〉 are eigenstates of H0, thus the perturbation H1 must be negligible
both in the far past and the far future to have well-defined initial and final states
w.r.t. H0. ρ(E) is the density of state, i.e. the number of states at energy E.
Fermi’s Golden Rule works for all kinds of situation and often its inverse provides
a mean life-time of the initial state.

2.4.4 Scattering Theory

!!!WARNING!!!

I have to apologize, but I guess that there might be factors of
√

2π off in the
following equations. The problem is our asymmetric Fourier transform pre-factors
– I missed that while translating results from [Sha14]. But I will try to sort this out
if time before the school permits. Or if someone figures it out before me and tells
me, they will have my eternal gratitude. Differing conventions are a nightmare.

Scattering theory is slightly related to time-dependent perturbation theory. For ex-
ample, the Dyson series 131 will appear again. As usual, this will be a collection of
results and for a more in-depth treatment look at the list of QM books given here, there
and everywhere in these notes.

• First, a bit of vocabulary. Again, consider an unperturbed Hamiltonian H0, but
this time call the perturbation ‘scattering potential’ V . We will denote eigenstates
of the full Hamiltonian

H = H0 + V (133)

by |Ψ〉 and the eigenstates of the unperturbed Hamiltonian |Φ〉.
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• If we look at the |Ψ(k)〉, we are interested in those of the form

|Ψ(k)〉 = |Ψin〉+ |Ψscattered〉 . (134)

• If we align our coordinates along k, we can then rewrite these states asymptotically
as

〈r|Ψ(k)〉 = eikz +
f(θ,ϕ)

r
eikr. (135)

f(θ,ϕ) is the scattering amplitude.

• Then there is also the scattering cross-section:

σ =
Transition Probability |i〉 → |Ψ〉

Incident probability per unit area dA
. (136)

Now, I am not a great fan of words in formulae. However, here it is often helpful,
unless you want to go for something like it is done in chapter 3.d of [Tay72]. If we
are just looking at the differential cross-section into a solid angle dΩ, we look at

dσ

dΩ
. (137)

• Combining everything (with a bit of work) we get

dσ

dΩ
= |f(θ,ϕ)|2 . (138)

• The scattering matrix S (a.k.a. S-matrix) is the limit of the time-evolution operator
U(t0,t):

S := lim
t0→−∞

lim
t→∞

U(t0,t). (139)

• Evaluating the Dyson series for S to first order is called the Born approximation and
has the nice result of linking the differential cross-section to the Fourier transform
of the scattering potential V :

dσ

dΩ
=

∣∣∣∣ m

2π~2

∫
e−

iq·r′/~V (r′)d3r′
∣∣∣∣2 . (140)

Here, q := pout − pin is the momentum transfer. In this formula, my warning
regarding factors of

√
2π definitely applies! Sorry! Also, our approximation means

that |pout| = |pin|.

• It is incredibly helpful to know that

q2 = 4 |pin|2 sin2(θ/2). (141)
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• The optical theorem reads

σ =
4π

|pin|
=f(0), (142)

with f(0) being the scattering amplitude in forward direction.

• If we have a retarded/advanced Green’s function for H0, we can try to solve |Ψ〉 (k)
as

|Ψ〉out/in = |Φ〉+G±0 |Ψ〉 , (143)

which is the Lippmann-Schwinger equation. Reinserting the RHS into the |Ψ〉 on
the RHS gives an approach to approximating this. Exchanging Ψ with Φ on the
RHS is the first step of this and again the Born approximation.

• Expanding f(θ, ϕ) in spherical harmonics gives the partial wave analysis.

• Poles in the S-matrix at negative energies correspond to bound states, poles close
to the negative energy axis in the complex energy plane correspond to resonances.
The imaginary part gives a sense of the stability of the resonance – the closer to
the real axis, the more stable the resonance.

2.4.5 A Preview of Dirac’s equation and the Klein-Gordon equation

Here, I will give a maybe slightly idiosyncratic approach. I do give the physical and
historical origin of the Klein-Gordon and the Dirac equation, but do not treat it as a
quantum theory. The reason being three-fold: First, the attempts at giving a language
similar to that known in quantum mechanics will not work out (see below). Second, some
of the interpretations used to salvage this state of affairs are highly dependent on what
particle is looked at. You will find talk about a ‘Dirac sea’ – but that works only for
fermions, so it will not really help for bosons. Third, further attempts to make everything
work out then finally end up being just what this summer school wants to teach you and
then sometimes uses language I am not too fond of. I consider ‘second quantization’ to
be a confusing term. So instead, I will give you a ‘classical’ approach to both equations.
Also, this exposition will differ slightly from what can, for example, be found in [Sre11]45.
But before we get started with each equation, let’s have a look at where it originates.

The idea is to make the Schrödinger equation

i~
∂

∂t
|Ψ〉 =

(
p̂2

2m
+ V

)
︸ ︷︷ ︸

Ĥ

|Ψ〉 (144)

agree with the relativistic energy-momentum relation

E2 = p2c2 +m2c4. (145)

45There, m doesn’t inherit the interpretation of being a mass. But it’s just units – and this time we’re
not building the Mars Climate Orbiter. . .
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Or, for that matter, even just with the idea that in relativity space and time need to
have the same standing in a reasonable, relativistic equation. But just looking at (144)
tells use that while time enters as a first derivative, space enters at least as a second
derivative. Not a good starting point. One, naive, idea is to take Ĥ as being related
to the energy (145), take the square root, and start approximating. Naive, because this
makes the space-time-asymmetry of a Schrödinger equation worse, not better, once you
insert p̂ = i~∇. The Klein-Gordon equation and the Dirac equation are now two different
approaches getting around this.
Literature-wise, I’d like to refer you to the many quantum-related books and links

mentioned earlier, but would also add [Gre00].

Klein-Gordon Equation

• Just square (144) and insert (145)!

=⇒
(
−~2∂2t + ~2c2∆−m2c4

)
something = 0

⇐⇒
(
�− m2c2

~2

)
something = 0

In order not to get bogged down by interpretational stuff yet, I just said that this
new operator should act on ‘something’. More on this later.

• Now, before talking about ‘something’, let’s look at what we achieved: Space and
time both enter as second order derivatives. Yay!

• But: Nay, it doesn’t work as a quantum theory. Why? We do get a continuity
equation (nice!)

i(something)†
↔
∂µ(something) = 0, (146)

where A
↔
∂µB := A∂µB− (∂µA)B, but if we try to give some meaning of probability

or probability density to this, we run into a brick wall – no component is ever going
to be positive definite. Not what we want for a quantum theory. #sadface

• Forgetting about the problems for a second – can we solve this? Yes! First of all,
it is nothing but a variation on the scalar wave-equation, so we can easily adapt
what we know from electrodynamics. Another way would be to vigorously wave
one’s hands, say that in the rest frame the momentum operator corresponds just
to ∂2t , solve the resulting equation, and then boost to whatever frame of reference
we want.

Dirac Equation

The Dirac46 equation takes a more subtle approach.

46Fact of the day: Did you know people used his name as unit for one word per hour? The more you
know!
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• The idea is to find a linear combination of ∂µ such that the square of this linear
combination is then the Klein-Gordon equation. From the latter we know that it
will fulfil the relativistic energy-momentum relation. So we are looking for γµ such
that

� = (γµ∂µ)2 . (147)

• Now this seems rather odd, after all, we also have the m-bit in (145) and that isn’t
how numbers and roots work. Yes. Numbers. Think of γµ rather as matrices! You
then get an interesting set of constraints (Exercise: Work them out! Take heed of
the order, as for matrices AB is not always BA.47 Also, if feel free to forget about
c to make life simpler.)

• As γµ appears very often contracted with some index down µ, it is customary to
introduce the (Feynman-)slash notation:

γµCµ =: /C. (148)

• One can find plenty of matrices that do the trick – especially given that we didn’t
say how large these matrices have to be. Things that can be done (all possible
exercises):

H Check out the traces of the γµ.

H The γµ have to be even dimensional.

H Why can’t 2× 2-matrices work? Think about what algebraic constraints you
have and how many matrices of this size there are that do this.

H Find a way to reintroduce m.

H Find a way to rewrite (147) as

(i~γµ∂µ −mc1) (something else) = 0. (149)

Feel free to abbreviate ‘something else’ as Ψ or whatever.

H Check that

γ0 =

(
12×2

−12×2

)
, γi =

(
σi

−σi

)
(150)

works. Here, σi are the Pauli matrices.

• What happens to the flaw of the Klein-Gordon equation? Set something else :=
γ0((something else))†. We can see now that

∂µ

(
(something else)γµ(something else)

)
= 0, (151)

and this time the zero-th component

(something else)γ0(something else) = (something else)†(something else) (152)

is positive definite! So that worked well!
47Hint:

You should something like {γ
µ
,γ
ν
} = 2δ

µν
1. 48

48{A,B} denotes the anti-commutator, i.e.{A,B} ≡ [A,B]+ := AB +BA.
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• However, we do get a rather ugly energy spectrum for the solutions (see below) –
from −∞ up to ∞. Not being bounded in both directions is asking for trouble, see
our cubic potentials from earlier. This is not good, either.#sadface

• While the Klein-Gordon equation was rather simple to solve, the Dirac equation
is a bit more involved. For starters, we do not have a model equation like the
wave equation that we can easily adapt to it. (Though we can guess that the
Dirac equation in a sense has to be ‘the root of the wave equation’ – whatever that
should mean precisely.) Nevertheless, the trick of using the Lorentz covariance to
first boost to a rest frame can be adapted to the Dirac equation. It’s just a bit
more complicated thanks to the matrices γµ. For example, the ‘four-vector of all
matrices γµ’ is not obviously a four-vector. More on this can be found in [Nik14].

Classical Interpretation as Relativistic Wave Equations

So, what to do about ‘something’ and ‘something else’? My answer would be to think
of it as a classical (complex) field. Does not necessarily help with negative energy spec-
tra49, but certainly helps with not caring about the extra bits of ‘quantum philosophy
of science’ – less physical ideas, less meaning to force onto symbols50. Concretely, we
do not have to worry about things like probability density interpretations if the field in
question is purely classical. Also, a bit on the terminology side/history of science side,
it helps avoiding confusion about ‘second quantization’ – we distinguish quantum field
theory from quantum mechanics by saying once we quantize a field (Klein-Gordon, Dirac,
Maxwell, Proca, . . . ) and once particles (harmonic oscillator, hydrogen atom, molecules,
. . . ) rather than confusing people about what comes first and why something is first and
something else is second. Maybe also a bit of an opinionated thing from my side.

3 Coda

That all saidwritten and done, I hope, I could provide you with a decent overview of
what you have done in physics before delving into quantum field theory. If there are
errors, don’t hesitate to tell me at sebastian.schuster@msor.vuw.ac.nz. Quantum
field theory is in my humble opinion not so difficult because it is more difficult than any
single subject encountered before in physics, but rather, because it quite comfortably
makes use of all of it with a flick of a wrist, so getting the basics on a solid foundation
is incredibly helpful. I, personally, find this makes up the allure of the subject, too –
finally it all comes together for the great finale. Of course, it is (probably) the first time
to encounter renormalization techniques in depth, as well, even though they find their
use already aplenty in other, much older parts of physics51. Hoping that I managed to
49For the Klein-Gordon equation it is not quite as bad as for the Dirac equation, see for example p.12ff

in [Gre00]. However, this would lead us to far afield.
50Part of the reason why I think it useful for physicists to care about philosophy of science. Many

physicists might disagree here and quite passionately at that.
51That it is an old problem can be seen by the Cauchy principal value which obviously has the goal of

getting rid of pesky singularities!
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help people with preparing for the school, let’s all have a fun, insightful and interesting
week full of quantum field theory.

Acknowledgements

This text is dedicated to my father, Manfred, who was at the receiving end of writing-
induced forgetfulness. Shame on me. Of course, given the wacky writing, this text would
have not been possible without the generous help of other people. For error finding and
general feedback, I’d like to thank Matt, Finn, Del, Jessica, Emma and Vee-Liem. This
list is likely to grow monotonically over time – all shame, embarrassment and guilt for
errors, imprecisions and misunderstandings fall52 on me.

References

[BD97] W.E. Boyce and R.C. DiPrima. Elementary Differential Equations and
Boundary Value Problems. John Wiley & Sons, 6th edition, 1997.

[BO99] C.M. Bender and S.A. Orszag. Advanced Mathematical Methods for Scientists
and Engineers. Springer-Verlag, 1999.

[Boh89] D. Bohm. Quantum Theory. Dover, 1989.

[Bö93] A. Böhm. Quantum Mechanics – Foundations and Applications. Springer,
third edition, 1993.

[CTDL77] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics. John Wiley
& Sons, 1977. 2 Volumes.

[dBG02] R. de la Madrid, A. Bohm, and M. Gadella. Rigged Hilbert Space Treatment
of Continuous Spectrum. Fortschr. Phys., 50:185–216, 2002. URL: https://
arxiv.org/abs/quant-ph/0109154, doi:10.1002/1521-3978(200203)50:
2<185::AID-PROP185>3.0.CO;2-S.

[de 05] R. de la Madrid. The role of the rigged hilbert space in quantum mechanics.
Eur. J. Phys., 26:287–312, 2005. URL: https://arxiv.org/abs/quant-ph/
0502053, doi:10.1088/0143-0807/26/2/008.

[DK10] J.J. Duistermaat and J.A.C. Kolk. Distributions. Birkhäuser, 2010.

[Eva10] L.C. Evans. Partial differential equations. Number 19 in Graduate studies in
mathematics. American Math. Soc., second edition, 2010.

52Probably the last footnote53: I am sure this has to be plural, given the list, but it just sounds wrong.
Is there a special rule that would make ‘falls’ correct? Fill me in on dirty special rules of English
grammar if there is.

53Ha! No! There is one final footnote – accompanying alliterations.

42

https://arxiv.org/abs/quant-ph/0109154
https://arxiv.org/abs/quant-ph/0109154
http://dx.doi.org/10.1002/1521-3978(200203)50:2<185::AID-PROP185>3.0.CO;2-S
http://dx.doi.org/10.1002/1521-3978(200203)50:2<185::AID-PROP185>3.0.CO;2-S
https://arxiv.org/abs/quant-ph/0502053
https://arxiv.org/abs/quant-ph/0502053
http://dx.doi.org/10.1088/0143-0807/26/2/008


References References

[Flü93] S. Flügge. Rechenmethoden der Quantentheorie. Springer, fünfte edition,
1993.

[Flü08] S. Flügge. Practical Quantum Mechanics. Springer, 2008.

[FS14] E.M. Ferreira and J. Sesma. Global solution of the cubic oscillaton. J. Phys.
A: Math. Theor., 47(41):415306, 2014. URL: https://arxiv.org/abs/1601.
02786, doi:10.1088/1751-8113/47/41/415306.

[FW04] T. Fließbach and H. Walliser. Arbeitsbuch zur Theoretischen Physik. Elsevier,
2004.

[Gou13] É. Gourgoulhon. Special Relativity in General Frames. Springer, 2013.

[Gre00] W. Greiner. Relativistic Quantum Mechanics: Wave Equations. Springer, 3rd
edition, 2000.

[Gri04] D.J. Griffiths. Introduction to Elementary Particles. Wiley-VCH, 2004.

[Gri08] D.J. Griffiths. Introduction to Electrodynamics. Pearson, 3rd edition, 2008.

[Gri12] D.J. Griffiths. Introduction to Quantum Mechanics. Pearson, 2nd edition,
2012.

[Hab04] R. Haberman. Applied Differential Equations. Pearson, fourth edition, 2004.

[HM84] F. Halzen and A.D. Martin. Quarks and Leptons. Wiley, New York, 1984.

[Jac75] J.D. Jackson. Classical Electrodynamics. John Wiley & Sons, 2nd edition,
1975.

[JS12] J.V. José and E.J. Saletan. Classical Dynamics - A Contemporary Approach.
Cambridge Univ. Press, 2nd edition, 2012.

[Kri01] M. Kriele. Spacetime. Springer, 2001.

[Kuy03] F. Kuypers. Klassische Mechanik. Wiley-VCH, 6. edition, 2003.

[Lan99] S. Lang. Complex Analysis. Springer, fourth edition, 1999.

[Lan05] S. Lang. Undergraduate Analysis. Springer, second edition, 2005.

[LM94] H.B. Lawson and M.-L. Michelsohn. Spin Geometry. Princeton University
Press, 1994.

[Mar06] B.R. Martin. Nuclear and Particle Physics. John Wiley & Sons, 2006.

[Nab10] G.L. Naber. The Geometry of Minkowski Spacetime. Springer, second edition,
2010.

43

https://arxiv.org/abs/1601.02786
https://arxiv.org/abs/1601.02786
http://dx.doi.org/10.1088/1751-8113/47/41/415306


References References

[Nik14] H. Nikolic. How (not) to teach lorentz covariance of the dirac equation. Eur.
J. Phys., 35:035003, 2014. URL: https://arxiv.org/abs/1309.7070, doi:
10.1088/0143-0807/35/3/035003.

[Pin02] M.A. Pinsky. Introduction to Fourier Analysis and Wavelets. AMS, 2002.

[PTVF07] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes. Cambridge Univ. Press, 3rd edition, 2007.

[Rae16] A.I.M. Rae. Quantum Mechanics. CRC Press, 6th edition, 2016.

[SG10] M. Stone and P. Goldbart. Mathematics for Physics. Cambridge Univ. Press,
2010.

[Sha14] R. Shankar. Principles of Quantum Mechanics. Springer, 2nd edition, 2014.
14th printing.

[SLSS09] M.R. Spiegel, S. Lipschutz, J.J. Schiller, and D. Spellman. Schaum’s Outlines:
Complex Variables. McGraw Hill, 2nd edition, 2009.

[Sre11] M. Srednicki. Quantum Field Theory. Cambridge Univ. Press, 2011.

[Tay72] J.R. Taylor. Scattering Theory: The Quantum Theory on Nonrelativistic Col-
lisions. John Wiley & Sons, 1972.

[Tay11] M.E. Taylor. Partial Differential Equations I. Springer, 2nd edition, 2011.

[Wei13] S. Weinberg. Lectures on Quantum Mechanics. Cambridge University Press,
2013.

[Zor04] V.A. Zorich. Mathematical Analysis II. Springer, 2004.

44

https://arxiv.org/abs/1309.7070
http://dx.doi.org/10.1088/0143-0807/35/3/035003
http://dx.doi.org/10.1088/0143-0807/35/3/035003

	Mathematics
	Normal Modes – A Playground for Linear Algebra
	"Functional Analysis" – Bits and Pieces of Distributions
	General Things and Notation
	Dirac's 
	Green's Functions

	Complex Analysis
	Riemann-Lebesgue Lemma
	Cauchy's Theorem, Residue Theorem and Co.
	Calculating Real Integrals with Complex Analysis
	Fourier Transformations
	Cauchy Principal Value and Kramers-Kronig Relations


	Physics
	Classical (non-relativistic) Mechanics
	Harmonic Oscillator(s) – Lagrangian and Hamiltonian Mechanics
	Classical Perturbation Theory

	Special Relativity
	Lorentz Invariance and Index Magic
	Kinematics and Mandelstam variables

	Electrodynamics
	3D versus 4D
	Gauge Freedom and Solving Maxwell Equations

	Quantum Mechanics
	A Review of Dirac Notation
	Ladder Operators
	A Smorgasbord of Perturbation Theory
	Scattering Theory
	A Preview of Dirac's equation and the Klein-Gordon equation


	Coda
	References

