Irrationality Exponents and Effective Hausdorff Dimension

Theodore A. Slaman

Joint work with Verónica Becher and Jan Reimann

January 8, 2017
Ralph Waldo Emerson on the purpose of life:

It is to be useful, to be honorable, to be compassionate, to have it make some difference that you have lived and lived well.

Cheers Rod on an exemplary mathematical life:

- Practitioner
- Expositor
- Mentor
- Leader
Abstract

Suppose $a \geq 2$ and $b \in [0, 2/a]$.

- (Generalization of Jarník 1929 and Besicovitch 1934) There is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to a.

- There is a Cantor-like set such that, with respect to its uniform measure, almost all real numbers have effective Hausdorff dimension equal to b and irrationality exponent equal to a.

In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.
Hausdorff Dimension

For a set of real numbers X and a non-negative real number s the s-dimensional Hausdorff measure of X is defined by

$$\lim_{\varepsilon \to 0} \inf \left\{ \sum_{j \geq 1} r_j^s : \text{there is a cover of } X \text{ by balls with radii } (r_j : j \geq 1) \text{ and } \forall j (r_j < \varepsilon) \right\}.$$

The Hausdorff dimension of X is the infimum of the set of non-negative reals s such that the s-dimensional Hausdorff measure of X is zero.
Effective Hausdorff Dimension of $\xi \in 2^\mathbb{N}$

Definition

The *effective Hausdorff dimension* of a real number ξ is the infimum of the set of t such that there is a c for which there are infinitely many ℓ such that the prefix-free Kolmogorov complexity of the first ℓ digits in the binary expansion of ξ is less than $t \cdot \ell + c$.

Heuristic: The effective Hausdorff dimension of a real number ξ is the infimum of the algorithmic compression factors of the initial segments of the binary expansion of ξ.

- Computable real numbers have effective dimension 0.
- Random real numbers have effective dimension 1.
- The set of real numbers with effective Hausdorff dimension b has Hausdorff dimension b.

There is an equivalent formulation using effectively presented covers.
Irrationality Exponent

Definition (originating with Liouville 1855)

For a real number ξ, the *irrationality exponent of* ξ is the least upper bound of the set of real numbers a such that

$$0 < \left| \xi - \frac{p}{q} \right| < \frac{1}{q^a}$$

is satisfied by an infinite number of integer pairs (p, q) with $q > 0$.

- When a is large and $0 < \left| \xi - \frac{p}{q} \right| < \frac{1}{q^a}$, then p/q is a good approximation to ξ when considered in the scale of $1/q$.
- The irrationality exponent of ξ is an indicator for how well ξ can be approximated by rational numbers (a linear version of Kolmogorov complexity).
Examples

- Random real numbers have irrationality exponent equal to 2.
- (Roth 1955) Irrational algebraic real numbers have irrationality exponent equal to 2.
- Liouville numbers are those with infinite irrationality exponent—these were the first examples of transcendental numbers.

Example

For $a \geq 2$, $\{\xi : \xi \text{ has irrationality exponent } a\}$ has Hausdorff dimension less than or equal to $2/a$.
Consequences of Irrationality Exponent for Effective Dimension

Remark

If ξ *has irrationality exponent equal to* a, *then* ξ *has effective Hausdorff dimension less than or equal to* $2/a$:

Proof

- Say that $|p/q - \xi| < 1/q^a$.
- Need $2 \cdot \log_2 q$ bits to specify p and q.
- Obtain $a \cdot \log_2 q$ bits in the binary expansion of ξ.
- \[\frac{2 \cdot \log_2 q}{a \cdot \log_2 q} = \frac{2}{a}. \]
No Other Consequences

The second result mentioned earlier has the following corollary.

Theorem (Becher, Reimann and Slaman)

For every \(a \geq 2 \) and every \(b \) in \([0, 2/a]\), there is a real number \(\xi \) such that \(\xi \) has irrationality exponent \(a \) and effective Hausdorff dimension \(b \).
The Jarník-Besicovitch Theorem

Theorem (Jarník 1929 and Besicovitch 1934)

For every real number a greater than or equal to 2, the set of numbers with irrationality exponent equal to a has Hausdorff dimension exactly equal to $\frac{2}{a}$.

As mentioned earlier, it is a direct application of the definitions to show that the Hausdorff dimension of the set of numbers with irrationality exponent a is less than or equal to $\frac{2}{a}$. The other inequality comes from an early application of fractal geometry.
Jarník’s Fractal

For each real number a greater than 2, Jarník gave a Cantor-like construction of a fractal J contained in $[0, 1]$ of Hausdorff dimension $2/a$ such that the uniform measure ν on J satisfies the following:

- Every element of J has irrationality exponent greater than or equal to a.
- For all b greater than a, the set of numbers with irrationality exponent greater than or equal to b has ν-measure equal to 0.

Let $(M_i : i \in \mathbb{N})$ be a rapidly increasing sequence of natural numbers.
Define $(E_i : i \in \mathbb{N})$ as follows.

- $E_0 = [0, 1]$
- For $i > 0$, let

$$E_i = \bigcup \left\{ \left[\frac{p}{q} - \frac{1}{q^a}, \frac{p}{q} + \frac{1}{q^a} \right] : 0 < p < q, M_i \leq q \leq 2M_i, q \text{ prime}, \right\}$$

$$[p/q - 1/q^a, p/q + 1/q^a] \subset E_{i-1}$$

Let $J = \bigcap_{i \in \mathbb{N}} E_i$.
The Mass Distribution Principle

Every element of J has irrationality exponent less than or equal to a, so the Hausdorff dimension of J is less than or equal to $2/a$.

Show that J has Hausdorff dimension at least $2/a$ by applying the following fact for the uniform measure μ on J.

Theorem (Mass Distribution Principle)

*Let ν be a finite measure, d a positive real number and X a set with Hausdorff dimension less than d. Suppose that there is a positive real number C such that for every interval I, $\nu(I) < C \vert I \vert^d$. Then $\nu(X) = 0$.***
Modifying J – Version 1

For $a \geq 2$ and $b \in [0, 2/a]$, there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to a.

Find $J_1 \subset J$ by thinning the levels of J, either by using fewer primes or by using one prime and fewer intervals $[p/q - 1/q^a, p/q + 1/q^a]$ and let μ_1 be the uniform measure on J_1.

▶ Ensure that the intervals from E_i which are retained to form J_1 provide the covers needed to show that J_1 has Hausdorff dimension less than or equal to b.

▶ Ensure the MDP for μ_1 with exponent b, and thereby ensure that J_1 has Hausdorff dimension exactly equal to b.

▶ Ensure that μ_1-almost all elements of J_1 have irrationality exponent equal to a by choosing from among all possible thinnings the one that minimizes the frequency of occurrences of rational approximation with exponent greater than a.
For \(a \geq 2 \) and \(b \in [0, 2/a] \), there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to \(b \) and irrationality exponent equal to \(a \).

Find \(J_2 \subset J \) by thinning the levels of \(J \), either by using fewer primes or by using one prime and fewer intervals \([p/q - 1/q^a, p/q + 1/q^a]\) and let \(\mu_2 \) be the uniform measure on \(J_1 \).

- Stratify the construction of \(J_2 \) into extended computable blocks of dimension close to \(b \), thereby producing for each element of \(J_2 \) instances of algorithmic compression approaching \(b \) and ensuring that \(\mu_2 \)-almost every element of \(J_2 \) has effective Hausdorff dimension less than or equal to \(b \).

- Ensure the MDP for \(\mu_2 \) with exponent \(b \). Thus, for \(d < b \), the set of real numbers with effective Hausdorff dimension equal to \(d \) is a \(\mu_2 \)-null set and so \(\mu_2 \)-almost every element of \(J_2 \) has effective Hausdorff dimension exactly \(b \).

- Ensure that \(\mu_2 \)-almost all elements of \(J_2 \) have irrationality exponent equal to \(a \) as before.
The End