There are no maximal dre wtt-degrees

Wu Guohua

Nanyang Technological University

01-07-2017
Turing Jump and High/Low Hierarchy

- $K^A = \{e : \Phi_e^A(e) \downarrow\}$, relativised Halting problem
Turing Jump and High/Low Hierarchy

- $K^A = \{ e : \Phi_e^A(e) \downarrow \}$, relativised Halting problem

- K^A, is called the Turing Jump of A, denoted as A'.
Turing Jump and High/Low Hierarchy

▶ $K^A = \{ e : \Phi^A_e(e) \downarrow \}$, relativised Halting problem

▶ K^A, is called the Turing Jump of A, denoted as A'.

▶ $'$ is increasing, and has range $\geq 0'$.

Turing Jump and High/Low Hierarchy

- $K^A = \{ e : \Phi^A_e(e) \downarrow \}$, relativised Halting problem

- K^A, is called the Turing Jump of A, denoted as A'.

- $'$ is increasing, and has range $\geq 0'$.

Jump Inversion Theorems:

- Friedberg, Shoenfield, Sacks
Turing Jump and High/Low Hierarchy

- \(K^A = \{ e : \Phi^A_e(e) \downarrow \} \), relativised Halting problem

- \(K^A \), is called the Turing Jump of \(A \), denoted as \(A' \).

- \(' \) is increasing, and has range \(\geq 0' \).

Jump Inversion Theorems:

Friedberg, Shoenfield, Sacks

- Low degrees and High degrees, High/Low hierarchy

- Sacks: There exist intermediate c.e. degrees, i.e. not low\(_n \), not high\(_n \) for any \(n \).
Superlow sets and wtt-noncuppable

A set A is superlow, if $A' \leq_{tt} \emptyset'$. A set B is superhigh, if $\emptyset'' \leq_{tt} H'$. There are superlow c.e. sets A and B such that $\emptyset' \leq_T A \oplus B$. (Bickford and Mills, 1982)

We cannot strengthen "Turing reduction" above as "wtt-reduction", as Bickford and Mills also proved.

If A is superlow and \emptyset' is wtt-reducible to $A \oplus W$, then \emptyset' is wtt-reducible to W. This shows the existence of c.e. sets, low, but not superlow.
Superlow sets and \textit{wtt}-noncuppable

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.

- A set B is superhigh, if $\emptyset'' \leq_{tt} H'$.
Superlow sets and \textit{wtt}-noncuppable

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.

- A set B is superhigh, if $\emptyset'' \leq_{tt} H'$.

- There are superlow c.e. sets A and B such that $\emptyset' \leq_T A \oplus B$. (Bickford and Mills, 1982)

We cannot strengthen “Turing reduction” above as “\textit{wtt}-reduction”, as Bickford and Mills also proved.

If A is superlow and \emptyset' is \textit{wtt}-reducible to $A \oplus W$, then \emptyset' is \textit{wtt}-reducible to W.

This shows the existence of c.e. sets, low, but not superlow.
Superlow sets and \textit{wtt}-noncuppable

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.

- A set B is superhigh, if $\emptyset'' \leq_{tt} H'$.

- There are superlow c.e. sets A and B such that $\emptyset' \leq_T A \oplus B$. (Bickford and Mills, 1982)

- We cannot strengthen “Turing reduction” above as “\textit{wtt}-reduction”, as Bickford and Mills also proved
 - If A is superlow and \emptyset' is \textit{wtt}-reducible to $A \oplus W$, then \emptyset' is \textit{wtt}-reducible to W.
Superlow sets and \textit{wtt}-noncuppable

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.

- A set B is superhigh, if $\emptyset'' \leq_{tt} H'$.

- There are superlow c.e. sets A and B such that $\emptyset' \leq_T A \oplus B$. (Bickford and Mills, 1982)

- We cannot strengthen “Turing reduction” above as “\textit{wtt}-reduction”, as Bickford and Mills also proved

 - If A is superlow and \emptyset' is \textit{wtt}-reducible to $A \oplus W$, then \emptyset' is \textit{wtt}-reducible to W.

- This shows the existence of c.e. sets, low, but not superlow.
For $A \subseteq \mathbb{N}$, define

$$A^\dagger = \{x : \exists i < x[\varphi_i(x) \downarrow \land \Phi^A_x\varphi_i(x)(x) \downarrow]\}.$$

Obviously, $A^\dagger \leq_T A \oplus \emptyset'$, so if $A \geq_T \emptyset'$, then $A^\dagger \equiv_T A$.

As indicated above, $A^\dagger \leq_T A \oplus \emptyset'$ is always true.
Bounded Jump Operator - a definition of Anderson and Csima

For $A \subseteq \mathbb{N}$, define

$$A^\dagger = \{x : \exists i < x[\varphi_i(x) \downarrow \& \Phi_x^{A^\dagger\varphi_i(x)}(x) \downarrow]\}.$$

Obviously, $A^\dagger \leq_T A \oplus \emptyset'$, so if $A \geq_T \emptyset'$, then $A^\dagger \equiv_T A$.

We can also have:

- $\emptyset^\dagger \equiv_1 \emptyset'$.
 So, for set A, $A \leq_{wtt} \emptyset^\dagger$ if and only if A is ω-c.e.
- $A \leq_1 A^\dagger$ and
 - $A^\dagger \not\leq_{wtt} A$.
 - $A^\dagger \leq_1 A'$.
- For some set A, $A^\dagger \not\leq_{wtt} A \oplus \emptyset'$.
 As indicated above, $A^\dagger \leq_T A \oplus \emptyset'$ is always true.
- For sets A, B with $A \leq_{wtt} B$, $A^\dagger \leq_1 B^\dagger$.
 This shows that \dagger, as a jump, is well-defined.
An analogue of Shoenfield’s Jump Inversion

Theorem (Anderson and Csima):
For a set \(C \) with \(\emptyset^\dagger \leq_{\text{wtt}} C \leq_{\text{wtt}} \emptyset^{\dagger\dagger} \), there is a set \(B \leq_{\text{wtt}} \emptyset^\dagger \) such that \(C \equiv_{\text{wtt}} B^\dagger \).

1. All superlow sets are bounded-low.
2. Bounded-low sets can have high degree. (Anderson, Csima and Lange)
3. There is a superhigh bounded-low set. (G. Wu and H. Wu)
4. There is a low, but not superlow, bounded-low set. (G. Wu and H. Wu)
Theorem (Anderson and Csima):
For a set C with $\emptyset^\dagger \leq_{wtt} C \leq_{wtt} \emptyset^{\dagger\dagger}$, there is a set $B \leq_{wtt} \emptyset^\dagger$ such that $C \equiv_{wtt} B^\dagger$.

A set A is bounded-low if $A^\dagger \leq_{wtt} \emptyset^\dagger$, i.e. if A^\dagger is ω-c.e..

1. All superlow sets are bounded-low.

2. Bounded-low sets can have high degree. (Anderson, Csima and Lange)

3. There is a superhigh bounded-low set. (G. Wu and H. Wu)

4. There is a low, but not superlow, bounded-low set. (G. Wu and H. Wu)
The structure of r.e. \textit{wtt}-degrees

1. A splitting theorem of Ladner and Sasso, in contrast to Lachlan’s nonsplitting theorem

2. Why does it work for \textit{wtt}-degrees?

3. Distributivity, by Lachlan
Contiguous degrees

1. Definition and characterization of contiguous degrees

2. Contiguous degrees are low₂

3. Downey’s strongly contiguous degrees and noncuppability

4. Stob’s result of a contiguous degree as a top of minimal pair, and discontinuity

5. dre contiguous degree, and others (joint with Yamaleev)
No maximal dre \textit{wtt}-degrees

1. CHLLS's maximal dre Turing degrees

2. Maximal dre Turing degrees cannot be low, by ACL and DY.

3. There are no maximal dre \textit{wtt}-degrees (joint with Yamaleev)

4. Requirements and strategies
Thanks!