Question 1 solutions (2016 Q3)
(a) Let $f(x)=x-a$.

$$
\begin{aligned}
& a=\int_{0}^{\frac{\pi}{2}} f(x) \sin x \mathrm{~d} x=\int_{0}^{\frac{\pi}{2}}(x-a) \sin x \mathrm{~d} x=[-x \cos x]_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d} x+[a \cos x]_{0}^{\frac{\pi}{2}}=1-a \\
& a=\frac{1}{2} \quad \therefore f(x)=x-\frac{1}{2}
\end{aligned}
$$

(b)
(1) $\frac{d\left(e^{2 x} y\right)}{d x}=2 e^{2 x} y+e^{2 x} \frac{d y}{d x}=2 e^{2 x} y+e^{2 x}(x-2 y)=x e^{2 x}$
(2) $e^{2 x} y=\int x e^{2 x} d x=\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x=\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+c$

$$
e^{2}=\frac{1}{2} e^{2}-\frac{1}{4} e^{2}+c \rightarrow c=\frac{3}{4} e^{2}
$$

$$
y=e^{-2 x}\left(\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+\frac{3}{4} e^{2}\right)=\frac{1}{4}\left(3 e^{2-2 x}+2 x-1\right)
$$

