Question 2 solutions (2016 Q4)
(a) Asymptotes $y= \pm 3 x, \tan \alpha=3, \frac{\sin ^{2} \alpha}{1-\sin ^{2} \alpha}=9, \sin ^{2} \alpha=\frac{9}{10}, \cos ^{2} \alpha=\frac{1}{10}$ $\sin \theta=\sin \left(180^{\circ}-2 \alpha\right)=\sin (2 \alpha)=2 \times \sqrt{\frac{9}{10}} \times \sqrt{\frac{1}{10}}=0.6$
(b) Method 1

$$
y= \pm 3 x, \frac{\left|3 x_{0}-y_{0}\right|}{\sqrt{10}} \cdot \frac{\left|3 x_{0}+y_{0}\right|}{\sqrt{10}}=\frac{36}{10}=3.6
$$

Method 2

$l_{1}: y=3 x$,
$l_{P A}: y-y_{0}=-\frac{1}{3}\left(x-x_{0}\right) \rightarrow A:\left(0.1 x_{0}+0.3 y_{0}, 0.3 x_{0}+0.9 y_{0}\right)$
$P A=\sqrt{0.9 x_{0}^{2}+0.1 y_{0}^{2}-0.6 x_{0} y_{0}}=\frac{1}{\sqrt{10}}\left|3 x_{0}-y_{0}\right|$
$l_{2}: y=-3 x$,
$l_{P B}: y-y_{0}=\frac{1}{3}\left(x-x_{0}\right) \rightarrow B:\left(0.1 x_{0}-0.3 y_{0},-0.3 x_{0},+0.9 y_{0}\right)$
$P B=\sqrt{0.9 x_{0}^{2}+0.1 y_{0}^{2}+0.6 x_{0} y_{0}}=\frac{1}{\sqrt{10}}\left|3 x_{0}+y_{0}\right|$
$P A \cdot P B=\frac{\left|3 x_{0}-y_{0}\right|}{\sqrt{10}} \cdot \frac{\left|3 x_{0}+y_{0}\right|}{\sqrt{10}}=\frac{36}{10}=3.6$
(c) Let $P\left(x_{0}, y_{0}\right), m_{C D}=k$. Note: $|k|>3$
$l_{C D}: y-y_{0}=k\left(x-x_{0}\right), y= \pm 3 x$
$C:\left(\frac{k x_{0}-y_{0}}{k-3}, \frac{3\left(k x_{0}-y_{0}\right)}{k-3}\right), D:\left(\frac{k x_{0}-y_{0}}{k+3}, \frac{-3\left(k x_{0}-y_{0}\right)}{k+3}\right)$
Note that $\sin \angle C O D=0.6$

$$
\begin{align*}
\text { Area }_{\triangle C O D}= & \frac{1}{2} \times 0.6 \times \sqrt{10}\left(\frac{k x_{0}-y_{0}}{k-3}\right) \times \sqrt{10}\left(\frac{k x_{0}-y_{0}}{k+3}\right) \\
& =\frac{3\left(k x_{0}-y_{0}\right)^{2}}{\left(k^{2}-9\right)} \tag{1}
\end{align*}
$$

Since CP $: P D=1: \lambda$,
$x_{0}=\frac{1}{\lambda+1}\left(\lambda \frac{k x_{0}-y_{0}}{k+3}+\frac{k x_{0}-y_{0}}{k-3}\right)=\frac{k x_{0}-y_{0}}{\lambda+1}\left(\frac{\lambda}{k+3}+\frac{1}{k-3}\right)$,
$y_{0}=\frac{1}{\lambda+1}\left(\lambda \frac{-3\left(k x_{0}-y_{0}\right)}{k+3}+\frac{3\left(k x_{0}-y_{0}\right)}{k-3}\right)=\frac{3\left(k x_{0}-y_{0}\right)}{\lambda+1}\left(\frac{-\lambda}{k+3}+\frac{1}{k-3}\right)$

$$
\begin{equation*}
\frac{x_{0}^{2}}{4}-\frac{y_{0}^{2}}{36}=1 \rightarrow \frac{\left(k x_{0}-y_{0}\right)^{2}}{\left(k^{2}-9\right)}=\frac{(\lambda+1)^{2}}{\lambda} \tag{2}
\end{equation*}
$$

area $_{\triangle C O D}=\frac{3(\lambda+1)^{2}}{\lambda}=3\left(\lambda+2+\frac{1}{\lambda}\right)$,
min area ${ }_{\triangle C O D}=12$, when $\lambda=1\left(\right.$ since $\left.\lambda+\frac{1}{\lambda} \geq 2\right)$.

