Question 4 solutions (2015 Q1)
(a)

$$
\begin{aligned}
S & =2 \pi \int_{1}^{3}\left(x^{3}+\frac{1}{12 x}\right) \sqrt{1+\left(3 x^{2}-\frac{1}{12 x^{2}}\right)^{2}} \mathrm{~d} x \\
& =2 \pi \int_{1}^{3}\left(x^{3}+\frac{1}{12 x}\right) \sqrt{1+9 x^{4}-\frac{1}{2}+\frac{1}{144 x^{4}}} \mathrm{~d} x \\
& =2 \pi \int_{1}^{3}\left(x^{3}+\frac{1}{12 x}\right) \sqrt{\left(3 x^{2}+\frac{1}{12 x^{2}}\right)^{2}} \mathrm{~d} x \\
& =2 \pi \int_{1}^{3}\left(x^{3}+\frac{1}{12 x}\right)\left(3 x^{2}+\frac{1}{12 x^{2}}\right) \mathrm{d} x \\
& =2 \pi \int_{1}^{3}\left(3 x^{5}+\frac{x}{12}+\frac{x}{4}+\frac{1}{144 x^{3}}\right) \mathrm{d} x=2 \pi \int_{1}^{3}\left(3 x^{5}+\frac{x}{3}+\frac{1}{144 x^{3}}\right) \mathrm{d} x \\
S & =2 \pi\left[\frac{x^{6}}{2}+\frac{x^{2}}{6}-\frac{1}{288 x^{2}}\right]_{1}^{3}=2295.5
\end{aligned}
$$

