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SUMMARY

In this paper we study the differentiability of implicitly defined functions which we encounter
in the profile likelihood estimation of parameters in semi-parametric models. Scott and Wild
(1997, 2001) and Murphy and van der Vaart (2000) developed methodologies that can avoid
dealing with such implicitly defined functions by reparametrizing parameters in the profile like-
lihood and using an approximate least favorable submodel in semi-parametric models. Our result
shows applicability of an alternative approach presented in Hirose (2010) which uses the direct
expansion of the profile likelihood.

Some key words: Efficiency; Efficient information bound; Efficient score; Implicitly defined function; Profile likeli-
hood; Semi-parametric model.

1. INTRODUCTION

Consider a general semi-parametric model

P = {pθ,η(x) : θ ∈ Θ, η ∈ H}

where pθ,η(x) is a density function on the sample spaceX which depends on a finite dimensional
parameter θ and an infinite dimensional parameter η. We assume that the set Θ of the parameter
θ is an open subset of Rd and the set H is infinite dimensional.

Once observations X1, . . . , Xn are generated from the model, the log-likelihood is given by

n−1`n(θ, η) = n−1
n∑
i=1

log pθ,η(Xi) =

∫
log pθ,η(x)dFn(x) (1)

where Fn is the empirical cdf based on the observations. In the profile likelihood approach, we
find a function ηθ,F of the parameter θ and a cdf F as the maximizer of the log-likelihood given
θ:

ηθ,Fn = argmaxη

∫
log pθ,η(x)dFn(x) (2)
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Then the profile (log)-likelihood is given by∫
log pθ,ηθ,Fn (x)dFn(x) (3)

In this paper we consider the situation when the function ηθ,F is given as the solution to the
operator equation of the form

η = Ψθ,F (η). (4)

Murphy, Rossini and van der Vaart (1997) encountered this type of implicitly defined function
in their maximum likelihood estimation problem in the proportional odds model. According to
them, “because Ĥβ is not an explicit function of β, we are unable to differentiate the profile
log-likelihood explicitly in β to form an estimator of Σ” (here Ĥβ is the maximizer of the log-
likelihood `n(β,H) given β,H is the baseline odds of failure and Σ is the efficient information).
The authors (Murphy, Rossini and van der Vaart (1997)) used a numerical approximation to the
problem. In the first example (Example 1) given below, we present a modified version of the
proportional odds model and give an example of implicitly defined function there.

Scott and Wild (1997, 2001) also encountered implicitly defined functions in their estimation
problem with data from various outcome-dependent sampling design. They proposed a method of
reparametrization of profile-likelihood so that the log-likelihood is an explicitly defined function
in terms of the parameters in the reparametrized model. Their estimators turned out to be efficient
and Hirose and Lee (2010) showed conditions under which reparametrization gives efficient
estimation in a context of multiple-sample semi-parametric model. In Example 2, we give an
example of implicitly defined function in the method of Scott and Wild.

Another way to avoid dealing with implicitly defined functions is developed by Murphy and
van der Vaart (2000). The paper proved the efficiency of profile likelihood estimation by intro-
ducing an approximate least favorable sub-model to express the upper and lower bounds for the
profile log-likelihood. Since these two bounds have the same expression for the asymptotic ex-
pansion, so does the one for the profile log-likelihood. This method cleverly avoided the implicit
function in the profile likelihood.

Hirose (2010) used direct asymptotic expansion of the profile likelihood to show the efficiency
of the profile likelihood estimator. Through this approach simplified logic of asymptotic expan-
sion of the profile likelihood, we can not avoid dealing with implicitly defined functions of the
form given in (4) in many applications. The purpose of this paper is to study the properties of
these function such as differentiability so that the method in Hirose (2010) is applicable to many
applications. The results in Hirose (2010) are summarized in SECTION 3.

In Section 2, we give 3 examples of such implicitly defined functions. The main results are
presented in Section 4. In Section 5, the main results are applied to one of the examples.

2. EXAMPLES

2·1. Example 1 (Semi-parametric proportional odds model)
The original asymptotic theory for maximum likelihood estimator in the semi-parametric pro-

portional odds model is developed in Murphy, Rossini and van der Vaart (1997). We present a
modified version of the model in Kosorok (2008).

In this model, we observe X = (U, δ, Z), where U = T ∧ C, δ = 1{U=T}, Z ∈ Rd is a co-
variate vector, T is a failure time and C is a right censoring time. We assume C and T are
independent given Z.



On differentiability of implicitly defined function 3

The proportional odds regression model is specified by the survival function of T given Z of
the form

S(t|Z) =
1

1 + eβ′ZA(t)
,

whereA(t) is nondecreasing function on [0, τ ] withA(0) = 0. τ is the limit of censoring distribu-
tion such that P (C > τ) = 0 and P (C = τ) > 0. The distribution of Z and C are uninformative
of S and varZ is positive definite.

The density function in the proportional odds model is

f(t|Z) =
eβ

′Za(t)

(1 + eβ′ZA(t))2
,

where a(t) = dA(t)/dt, and the hazard function is

h(t|Z) =
f(t|Z)

S(t|Z)
=

eβ
′Za(t)

1 + eβ′ZA(t)
.

The log-likelihood for an observation (U, δ, Z) is

`(U, δ, Z;β,A) = log
{
h(U |Z)δS(U |Z)

}
= δ(β′Z + log a(U))− (1 + δ) log(1 + eβ

′ZA(U)).

Consider one-dimensional submodels for A defined by the map

t→ At(s) =

∫ s

0
(1 + th1(u))dA(u),

where h1 is an arbitrary total variation bounded cadlag function on [0, τ ]. By differentiating the
log-likelihood function `(U, δ, Z;β,At) with respect to t at t = 0, we obtain the score operator

B(U, δ, Z;β,A)(h1) =
d

dt

∣∣∣∣
t=0

`(U, δ, Z;β,At)

= δh1(U)− (1 + δ)
eβ

′Z
∫ U
0 h1(s)dA(s)

1 + eβ′ZA(U)
.

Choose h1(u) = 1{u≤t}, then

B(U, δ, Z;β,A)(h1) = N(t)−
∫ t

0
W (s;β,A)dA(s),

where N(t) = δ1{U≤t}, Y (t) = 1{U≥t} and

W (s;β,A) =
(1 + δ)eβ

′ZY (s)

1 + eβ′ZA(U)
.

For a cdf function F and a function φ, write EFφ =
∫
φdF . Set EFB(U, δ, Z;β,A)(h1) = 0

and we obtain

EFN(t) = EF

∫ t

0
W (s;β,A)dA(s). (5)
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It is easy to check that

Âβ,F (t) =

∫ t

0

EFdN(s)

EFW (s;β, Âβ,F )
(6)

is a solution to Equation (5).
If we let

Ψβ,F (A) =

∫ t

0

EFdN(s)

EFW (s;β,A)
,

then (6) is a solution to the operator equation A = Ψβ,F (A).

2·2. Example 2(Stratified sampling)
The method of Scott and Wild (1997, 2001) transform the profile likelihood with an im-

plicitly defined function of the form (4) into a likelihood with explicitly defined function by
reparametrization. This example is one of the situation when we can apply their method.

Suppose the underlying data generating process on the sample space Y × X is a model

Q = {p(y, x; θ) = f(y|x; θ)g(x) : θ ∈ Θ, g ∈ G}. (7)

Here f(y|x; θ) is a conditional density of Y given X which depends on a finite dimensional
parameter θ, g(x) is an unspecified density of X which is an infinite-dimensional nuisance
parameter. We assume the set Θ ⊂ Rd is an open set containing a neighborhood of the true value
θ0 and G is the set of density function of x containing the true value g0(x). The variable Y may
be a discrete or continuous variable or combination of both in Euclidean spaces.

For a partition of the sample space Y × X = ∪Ss=1Ss, define

Qs|X(x; θ) =

∫
f(y|x; θ) 1(y,x)∈Ss dy,

and let

Qs(θ, g) =

∫
Qs|X(x; θ)g(x) dx

be the probability of (Y,X) belonging to stratum Ss.
In standard stratified sampling, for each s = 1, . . . , S, a random sample of size ns, is taken

from the conditional distribution

ps(y, x; θ, g) =
f(y|x; θ)g(x)1(y,x)∈Ss

Qs(θ, g)
(8)

of (Y,X) given stratum Ss.
For each s = 1, . . . , S, let Fs0 be the cumulative distribution function (cdf) for the density

ps(y, x; θ0, g0) at the true value (θ0, g0). Let ws, s = 1, . . . , S, be the weight probabilities, i.e.,
ws > 0 for all s and

∑
sws = 1. The log likelihood with the weight probabilitiesws and the cdfs

Fs0 is
S∑
s=1

ws

∫
log ps(y, x; θ, g)dFs0 =

S∑
s=1

ws

[∫
{log f(y|x; θ) + log g(x)} dFs0 − logQs(θ, g)

]
For each θ, we find a maximizer ĝθ(x) of log-likelihood under the assumption

that the support of the distribution of X is finite: i.e. SUPP(X) = {v1, . . . , vK}. Let
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(g1, . . . , gK) = {g(v1), . . . , g(vK)}, then log g(x) and Qs(θ, g) can be expressed as log g(x) =∑K
k=1 1{x=vk} log gk and Qs(θ, g) =

∫
Qs|X(x; θ)g(x)dx =

∑K
k=1Qs|X(vk; θ)gk.

To find the maximizer (g1, . . . , gK) of the expected log-likelihood at θ, differentiate it with
respect to gk and set the derivative equal to zero,

∂

∂gk

S∑
s=1

ws

∫
log ps(y, x; θ, g)dFs0 =

S∑
s=1

ws

{∫
1x=vkdFs0
gk

−
Qs|X(vk; θ)

Qs(θ, g)

}
= 0.

The solution gk to the equation is

ĝθ(vk) = gk =

∑S
s=1ws

∫
1x=vkdFs0∑S

s=1ws
Qs|X(vk;θ)

Qs(θ,g)

.

The form of the function motivates us to work with an implicit function ĝθ(x) given by the
solution of g = Ψθ(g) where

Ψθ(g) =
f∗0 (x)∑S

s=1ws
Qs|X(x;θ)

Qs(θ,g)

and

f∗0 (x) =
S∑
s=1

ws
Qs|X(x; θ0)g0(x)

Qs(θ0, g0)
.

For further development of this example, see Hirose and Lee (2010).

2·3. Example 3(Continuous outcome with missing data)
This example is studied in Weaver and Zhou (2005) and Song, Zhou and Kosorok (2009). As

in Example 2 we assume the underlying data generating process on the sample space Y × X is
given by the model (7) where we assume the variable Y is continuous.

We consider a situation when there are samples for which we observe complete observation
(Y,X) and for which we observe only Y . Let Ri be the indicator variable for the ith observation
defined by

Ri =

{
1 if Xi is observed
0 if Xi is not observed.

Then the index set for the complete observations is V = {Ri = 1} and the index set for the in-
complete observations is V = {Ri = 0}. Let nV = |V |, nV = |V | be the total number of com-
plete observations and incomplete observations, respectively.

Weaver and Zhou (2005) and Song, Zhou and Kosorok (2009) consider the likelihood of the
form

L(θ, g) =
∏
i∈V
{f(Yi|Xi; θ)g(Xi)}

∏
i∈V

fY (Yi; θ, g) (9)

where

fY (y; θ, g) =

∫
X
f(y|x; θ)g(x)dx. (10)

The density function that corresponds to the likelihood (9) is

p(s, z; θ, g) = 1{s=1}f(y|x; θ)g(x) + 1{s=2}fY (y; θ, g) (11)
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where z = (y, x) when s = 1, z = y when s = 2.
The log-likelihood, the 1/n times log of (9), is

1

n
logL(θ, g) =

nV
n

1

nV

∑
i∈V
{log f(yi|xi; θ) + log g(xi)}+

nV
n

1

nV

∑
i∈V

log fY (yi; θ, g).

Let F1n and F2n be the empirical cdfs based on the samples in V and V , respectively.
Denote w1n = nV /n, w2n = nV /n and let Fn =

∑2
s=1wsnFsn.

Then the log-likelihood can be expressed as

1

n
logL(θ, g) =

∫
log p(s, z; θ, g)dFn

= w1n

∫
{log f(yi|xi; θ) + log g(xi)} dF1n + w2n

∫
log fY (yi; θ, g)dF2n.

First we assume that the support ofX is {v1, . . . , vL}. Let (g1, . . . , gL) = (g(v1), . . . , g(vL)),
then

log g(z) =
L∑
l=1

1{x=vl} log gl, and fY (y; θ, g) =
L∑
l=1

f(y|vl; θ)gl (12)

For fixed θ, we find the maximizer (g1, . . . , gK) of the log-likelihood
∫

log p(s, x; θ, g)dFn.
Using (12), the derivative of the log-likelihood with respect to gk is

∂

∂gl

∫
log p(s, x; θ, g)dFn = w1n

∫
1{x=vl}dF1n

gl
+ w2n

∫
f(y|vl; θ)
fY (y; θ, g)

dF2n.

Let η be a Lagrange multiplier to account for
∑

l gl = 1. Set ∂
∂gl

∫
log p(s, x; θ, g)dFn + η =

0. Multiply by gl and sum over l = 1, . . . , L to getw1n + w2n + η = 0. Therefore η = −(w1n +
w2n) = −1 and ∂

∂gl

∫
log p(s, x; θ, g)dF − 1 = 0. By rearranging this equation, we obtain

gl =
w1n

∫
1{x=vl}dF1n

1− w2n

∫ f(y|vl;θ)
fY (y;θ,g)dF2n

.

This gives us a candidate function

gθ,Fn(x) =
w1n

∫
dF1n
dx

1− w2n

∫ f(y|x;θ)
fY (y;θ,gθ,Fn )

dF2n

. (13)

This is a solution to the equation g = Ψθ,Fn(g) with

Ψθ,F (g) =
w1

∫
dF1
dx

1− w2

∫ f(y|x;θ)
fY (y;θ,g)dF2

We continue this example in SECTION 5.

3. ASYMPTOTIC NORMALITY OF PROFILE LIKELIHOOD ESTIMATOR

Hirose (2010) showed the efficiency of the estimator based on the profile likelihood in semi-
parametric models using the direct asymptotic expansion of the profile likelihood. The method
gives alternative to the one proposed by Murphy and van der Vaart (2000) which uses an asymp-
totic expansion of approximate profile likelihood. We summarize the results from the paper. To
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be able to use the results to the examples with implicitly defined function of the form (4), we
must establish the differentiability of implicitly defined functions. This is the motivation of this
paper and we present the differentiability of such functions in the next section.

Suppose we have a function ηθ,F that depends on (θ, F ) such that ˜̀
0(x) ≡ ˜̀

θ0,F0(x) is the
efficient score function, where

˜̀
θ,F (x) ≡ ∂

∂θ
log p(x; θ, ηθ,F ). (14)

The theorem below show that if the solution θ̂n to the estimating equation∫
˜̀̂
θn,Fn

(x)dFn = 0 (15)

is consistent then it is asymptotically linear with the efficient influence function Ĩ−10
˜̀
0(x) so that

n−1/2(θ̂n − θ0) =

∫
Ĩ−10

˜̀
0(s, x)d{n−1/2(Fn − F0)}+ oP (1)

d−→ N(0, Ĩ−10 ), (16)

whereN(0, Ĩ−10 ) is a normal distribution with mean zero and variance Ĩ−10 . Since Ĩ0 = E0(˜̀
0
˜̀T
0 )

is the efficient information matrix, this demonstrates that the estimator θ̂n is efficient.
On the set of cdf functions F , we use the sup-norm, i.e., for F, F0 ∈ F ,

‖F − F0‖ = sup
x
|F (x)− F0(x)|.

For ρ > 0, let

Cρ = {F ∈ F : ‖F − F0‖ < ρ}.

THEOREM 1. (Hirose (2010)) Assumptions:

(R0) The function gθ,F satisfies gθ0,F0 = g0 and the function

˜̀
0(x) = ˜̀

θ0,F0(x)

is the efficient score function where ˜̀
θ,F (x) is given by (14).

(R1) The empirical process Fn is n1/2-consistent, i.e., n1/2‖Fn − F0‖ = OP (1), and there exists
a ρ > 0 and a neighborhood Θ of θ0 such that for each (θ, F ) ∈ Θ× Cρ, the log-likelihood
function log p(x; θ, ĝθ,F ) is twice continuously differentiable with respect to θ and Hadamard
differentiable with respect to F for all x.

(R2) The efficient information matrix Ĩ0 = E0(˜̀
0
˜̀T
0 ) is invertible.

(R3) There exists a ρ > 0 and a neighborhood Θ of θ0 such that the class of functions {˜̀θ,F (x) :
(θ, F ) ∈ Θ× Cρ} is Donsker with square integrable envelope function, and that the class
of functions { ∂∂θ ˜̀

θ,F (x) : (θ, F ) ∈ Θ× Cρ} is Glivenko-Cantelli with integrable envelope
function.

Under the assumptions {(R0), (R1), (R2), (R3)}, for a consistent solution θ̂n to the estimat-
ing equation (15), the equation (16) holds.

4. MAIN RESULTS

In this section we show the differentiability of implicitly defined function which is given as a
solution to the operator equation (4). First, we state the Hadamard differentiability: we say that
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a map ψ : B1 → B2 between two Banach spaces B1 and B2 is Hadamard differentiable at x if
there is a continuous linear map dψ(x) : B1 → B2 such that

t−1{ψ(xt)− ψ(x)} → dψ(x)(h) as t ↓ 0

for any map t→ xt with xt=0 = x and t−1(xt − x)→ h ∈ B1 (as t ↓ 0).
The map dψ(x) is called derivative of ψ at x, and is continuous in x. (For reference, see Gill

(1989) and Shapiro (1990).)
We denote the second derivative of ψ in the sense of Hadamard by d2ψ(x). The usual first and

second derivative of a parametric function ψ are denoted by ψ̇ and ψ̈.
As we stated in Introduction, we consider a general semi-parametric model

P = {pθ,η(x) : θ ∈ Θ, η ∈ H}

where pθ,η(x) is a density function on the sample spaceX which depends on a finite dimensional
parameter θ and an infinite dimensional parameter η. We assume that the set Θ of the parameter
θ is an open subset of Rd and the set H is a convex set in a Banach space B which we may
assume the closed linear span of H .

THEOREM 2. Suppose the function Ψθ,F (η) is

(A1) two times continuously differentiable with respect to θ and two times Hadamard differen-
tiable with respect to η and Hadamard differentiable with respect to F so that the derivatives
Ψ̇θ,F (η), Ψ̈θ,F (η), dηΨθ,F (η), d2ηΨθ,F (η), dηΨ̇θ,F (η) and dFΨθ,F (η) exist (where, for exam-
ple, Ψ̇θ,F (η) is the first derivative with respect to θ, and dηΨθ,F (η) is the first derivative with
respect to η in the sense of Hadamard. Similarly, the rest is defined).

(A2) the true values (θ0, η0, F0) satisfy η0 = Ψθ0,F0(η0).
(A3) the linear operator dηΨθ0,F0(η0) : B → B has the operator norm ‖dηΨθ0,F0(η0)‖ < 1.

Then the solution ηθ,F to the equation

η = Ψθ,F (η) (17)

exists in an neighborhood of (θ0, F0) and it is two times continuously differentiable with re-
spect to θ and Hadamard differentiable with respect to F in the neighborhood. Moreover, the
derivatives are given by

η̇θ,F = [I − dηΨθ,F (ηθ,F )]−1Ψ̇θ,F (ηθ,F ), (18)

η̈θ,F = [I − dηΨθ,F (ηθ,F )]−1
[
Ψ̈θ,F (ηθ,F ) + dηΨ̇θ,F (ηθ,F )η̇Tθ,F

+dηΨ̇
T
θ,F (ηθ,F )η̇θ,F + d2ηΨθ,F (ηθ,F )η̇θ,F η̇

T
θ,F

]
, (19)

and

dF ηθ,F = [I − dηΨθ,F (ηθ,F )]−1dFΨθ,F (ηθ,F ). (20)

4·1. Proof of THEOREM 2
Existence and invertibility:

We assumed the derivative dηΨθ0,F0(η0) exists and ‖dηΨθ0,F0(η0)‖ < 1. By the continuity
with respect to the parameters (θ, η, F ), there is a neighborhood of (θ0, η0, F0) such that
‖dηΨθ,F (η)‖ < 1 for all (θ, η, F ) in the neighborhood. Let I : B → B be the identity opera-
tor on the space B. In the neighborhood, the map (I − dηΨθ,F (η)) : B → B has the inverse
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(I − dηΨθ,F (η))−1, which is also a bounded linear map (cf. Kolmogorov and Fomin (1975),
Theorem 4, p 231). It also follows that there is a neighborhood of (θ0, η0, F0) such that, for each
(θ, F ), the map η → Ψθ,F (η) is a contraction mapping in the neighborhood. By Banach’s con-
traction principle (cf. Agarwal, O’Regan and Sahu (2009), Theorem 4.1.5, p178), the solution
to the equation (17) exists uniquely in the neighborhood.

Differentiability with respect to F :
Fix h1 and h2 in appropriate spaces and let Ft and ηt be maps such that Ft=0 = F , ηt=0 = η,
t−1{Ft − F} → h1 and t−1{ηt − η} → h2 as t ↓ 0. Then, Ft → F , ηt → η (as t ↓ 0), and by
condition (A1), as t ↓ 0,

t−1{Ψθ,Ft(η)−Ψθ,F (η)} → dFΨθ,F (η)h1

and

t−1{Ψθ,F (ηt)−Ψθ,F (η)} → dηΨθ,F (η)h2.

Therefore, as t ↓ 0,

t−1{ηθ,Ft − ηθ,F } = t−1{Ψθ,Ft(ηθ,Ft)−Ψθ,F (ηθ,F )}
= t−1{Ψθ,Ft(ηθ,Ft)−Ψθ,F (ηθ,Ft)}+ t−1{Ψθ,F (ηθ,Ft)−Ψθ,F (ηθ,F )}
= dFΨθ,F (ηθ,F )h1 + dηΨθ,F (ηθ,F )t−1{ηθ,Ft − ηθ,F }+ o(1).

It follows that

[I − dηΨθ,F (ηθ,F )]t−1{ηθ,Ft − ηθ,F } = dFΨθ,F (ηθ,F )h1 + o(1)

and

t−1{ηθ,Ft − ηθ,F } → [I − dηΨθ,F (ηθ,F )]−1dFΨθ,F (ηθ,F )h1

as t ↓ 0. Since the map [I − dηΨθ,F (ηθ,F )]−1dFΨθ,F (ηθ,F ) is bounded and linear, the function
ηθ,F (x) is Hadamard differentiable with respect to F .

Differentiability with respect to θ:
Similar to the case for differentiability with respect to F , for t−1(θt − θ)→ a ∈ Rd as t ↓ 0, we
have

t−1{ηθt,F − ηθ,F } = aT Ψ̇θ,F (ηθ,F ) + dηΨθ,F (ηθ,F )t−1{ηθt,F − ηθ,F }+ o(1).

It follows that the first derivative η̇θ,F of ηθ,F (x) with respect to θ is given by

aT η̇θ,F = [I − dηΨθ,F (ηθ,F )]−1aT Ψ̇θ,F (ηθ,F ). (21)

From (21), we have

aT η̇θ,F = aT Ψ̇θ,F (ηθ,F ) + dηΨθ,F (ηθ,F )(aT η̇θ,F ).

Using this equation, for t−1(θt − θ)→ b ∈ Rd as t ↓ 0, we get θt → θ and hence

t−1{aT η̇θt,F − aT η̇θ,F }
= t−1{aT Ψ̇θt,F (ηθt,F )− aT Ψ̇θ,F (ηθ,F )}+ t−1{dηΨθt,F (ηθt,F )(aT η̇θt,F )− dηΨθ,F (ηθ,F )(aT η̇θ,F )}
= aT Ψ̈θ,F (ηθ,F )b+ aTdηΨ̇θ,F (ηθ,F )(η̇Tθ,F b) + {dηΨ̇θ,F (ηθ,F )(aT η̇θ,F )}T b

+d2ηΨθ,F (ηθ,F )(aT η̇θ,F )(η̇Tθ,F b) + dηΨθ,F (ηθ,F )t−1{aT η̇θt,F − aT η̇θ,F }+ o(1).
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By rearranging this we obtain

[I − dηΨθ,F (ηθ,F )]t−1{aT η̇θt,F − aT η̇θ,F }
= aT Ψ̈θ,F (ηθ,F )b+ aTdηΨ̇θ,F (ηθ,F )(η̇Tθ,F b) + {dηΨ̇θ,F (ηθ,F )(aT η̇θ,F )}T b

+d2ηΨθ,F (ηθ,F )(aT η̇θ,F )(η̇Tθ,F b) + o(1),

and hence, as t ↓ 0,

t−1{aT η̇θt,F − aT η̇θ,F } → aT η̈θ,F b

where

aT η̈θ,F b = [I − dηΨθ,F (ηθ,F )]−1
[
aT Ψ̈θ,F (ηθ,F )b+ aTdηΨ̇θ,F (ηθ,F )(η̇Tθ,F b)

+{dηΨ̇θ,F (ηθ,F )(aT η̇θ,F )}T b+ d2ηΨθ,F (ηθ,F )(aT η̇θ,F )(η̇Tθ,F b)
]
.

Therefore η̇θ,F is differentiable with respect to θ with derivative η̈θ,F .

5. EXAMPLE 3 CONTINUED

Let θ0, g0 and F0 be the true values of θ, g and F at which data are generated.
For θ ∈ Rd, F =

∑
swsFs and function g(x), define

Ψθ,F (g) =

∫ π1(dF )
dx

A(x; θ, g, F )
, (22)

where πs : F =
∑

s′ ws′Fs′ → wsFs, s = 1, 2, are projections, and

A(x; θ, g, F ) = 1−
∫

f(y|x; θ)

fY (y; θ, g)
π2(dF ). (23)

Then the function gθ,Fn(x) given by (13) is the solution to the operator equation

g(x) = Ψθ,F (g)(x) (24)

with F = Fn.
First, we prove the following lemma which we need in the subsequent verifications.

LEMMA 1. At (θ0, F0), g0(x) is a solution to the operator equation (24).

Proof. Since
∫
dF10
dx =

∫
f(y|x; θ0)g0(x)dy = g0(x), and dF20(y)

dy = fY (y; θ0, g0), w10 +
w20 = 1, we have

Ψθ0,F0(g0)(x) =
w10

∫
dF10
dx

1− w20

∫ f(y|x;θ0)
fY (y;θ0,g0)

dF20

=
w10g0(x)

1− w20

∫ f(y|x;θ0)
fY (y;θ0,g0)

fY (y; θ0, g0)dy
= g0(x)

where we used
∫
f(y|x; θ)dy = 1 for each x. �

We show the differentiability of the solution gθ,F (x) to the equation (24) with respect to θ and
F .

THEOREM 3. We assume the function f(y|x; θ) is twice continuously differentiable with re-
spect to θ and w20

w10
< 1.
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The solution gθ,F (x) to the operator equation (24) exists in an neighborhood of (θ0, F0) and
it is two times continuously differentiable with respect to θ and Hadamard differentiable with
respect to F in the neighborhood.

We verify conditions (A1), (A2) and (A3) in Theorem 1 so that the results in the theorem
follows from Theorem 1.

We denote f = f(y|x; θ), fY = fY (y; θ, g), A = A(x; θ, g, F ), ḟ = ∂
∂θf(y|x; θ), f̈ =

∂2

∂θ ∂θT
f(y|x; θ), ḟY =

∫
ḟ(y|x; θ)g(x)dx, and f̈Y =

∫
f̈(y|x; θ)g(x)dx.

Verification of condition (A1): We show that the map Ψθ,F (g) is differentiable with respect
to θ, F and g.

(a) (The derivative of Ψθ,F (g) with respect to F )
Suppose a map t→ Ft satisfies t−1(Ft − F )→ h as t ↓ 0.
Then

t−1 {Ψθ,Ft(g)−Ψθ,F (g)} = t−1

{ ∫ π1(dFt)
dx

A(x; θ, g, Ft)
−

∫ π1(dF )
dx

A(x; θ, g, F )

}
→ dFΨθ,F (g)h

where the map dFΨθ,F (g) is given by

dFΨθ,F (g)h =

∫ π1(dh)
dx A(x; θ, g, F )−

∫ π1(dF )
dx {dFA(x; θ, g, F )h}

{A(x; θ, g, F )}2
(25)

and

dFA(x; θ, g, F )h = −
∫

f(y|x; θ)

fY (y; θ, g)
π2(dh).

Hence, the map F → Ψθ,F (g) is Hadamard differentiable at (θ, g, F ) with derivative
dFΨθ,F (g) (clearly, the derivative is linear in h, we omit the proof of boundedness of
dFΨθ,F (g)).

(b) (The derivative of Ψθ,F (g) with respect to g)
Now, suppose a map t→ gt satisfies t−1(gt − g)→ h∗ as t ↓ 0. Then, as t ↓ 0,

t−1 {Ψθ,F (gt)−Ψθ,F (g)} = t−1

{ ∫ π1(dF )
dx

A(x; θ, gt, F )
−

∫ π1(dF )
dx

A(x; θ, g, F )

}
→ dgΨθ,F (g)h∗

where

dgΨθ,F (g)h∗ =
−
∫ π1(dF )

dx {dgA(x; θ, g, F )h∗}
{A(x; θ, g, F )}2

, (26)

and

dgA(x; θ, g, F )h∗ =

∫
f(y|x; θ)

∫
f(y|x; θ)h∗(x)dx

{fY (y; θ, g)}2
π2(dF ). (27)

Since the limit is linear in h∗, the map g → Ψθ,F (g) is Hadamard differentiable provided the
map dgΨθ,F (g) is bounded. In “Verification of condition (A3)”, we show the boundedness of
the derivative dgΨθ,F (g).



12 YUICHI HIROSE AND JEAN-MARIE AUBRY

(c) (The second derivative of Ψθ,F (g) with respect to g)
Suppose a map t→ gt satisfies t−1(gt − g)→ h2 as t ↓ 0. Then, as t ↓ 0,

t−1{dgΨθ,F (gt)h1 − dgΨθ,F (g)h1}

= t−1

[
−
∫ π1(dF )

dx {dgA(x; θ, gt, F )h1}
{A(x; θ, gt, F )}2

−
−
∫ π1(dF )

dx {dgA(x; θ, g, F )h1}
{A(x; θ, g, F )}2

]
→ d2gΨθ,F (g)h1h2

where

d2gΨθ,F (g)h1h2

=

∫
π1(dF )

dx

[
−
d2gA(x; θ, g, F )h1h2

{A(x; θ, gt, F )}2
+

2{dgA(x; θ, g, F )h1}{dgA(x; θ, g, F )h2}
{A(x; θ, g, F )}3

]
,

(28)

and

d2gA(x; θ, gt, F )h1h2 = −2

∫
f(y|x; θ)

{∫
f(y|x; θ)h1(x)dx

}{∫
f(y|x; θ)h2(x)dx

}
{fY (y; θ, g)}3

π2(dF ).

(Again, we omit the proof of boundedness of the derivative.)
(d) (The first and second derivative of Ψθ,F (g) with respect to θ)

It is straightforward to show that the function Ψθ,F (g) defined by (22) is twice continuously
differentiable with respect to θ. Let us denote the first and second derivatives by Ψ̇θ,F (g) and
Ψ̈θ,F (g), respectively. They are given by, for a, b ∈ Rd,

aT Ψ̇θ,F (g) = aT
{
∂

∂θ
Ψθ,F (g)

}
= −

∫ π1(dF )
dx aT Ȧ

A2
, (29)

aT Ψ̈θ,F (g)b = aT
{

∂2

∂θ ∂θT
Ψθ,F (g)

}
b = −

∫ π1(dF )
dx {A(aT Äb)− 2(aT Ȧ)(ȦT b)}

A3
,(30)

where

aT Ȧ = aT
{
∂

∂θ
A(x; θ, g, F )

}
= −

∫
fY (aT ḟ)− f(aT ḟY )

f2Y
π2(dF )

and

aT Äb = aT
{

∂2

∂θ ∂θT
A(x; θ, g, F )

}
b

= −
∫
f2Y (aT f̈ b)− ffY (aT f̈Y b) + 2f(aT ḟY )(ḟTY b)− fY (aT ḟ)(ḟTY b)− fY (aT ḟY )(ḟT b)

f3Y
π2(dF ).

(e) (The derivative of Ψθ,F (g) with respect to θ and g)
Suppose a map t→ gt is such that gt → g and t−1(gt − g)→ h∗ as t ↓ 0. Then, as t ↓ 0,

t−1{aT Ψ̇θ,F (gt)− aT Ψ̇θ,F (g)}

= −t−1
[∫ π1(dF )

dx aT Ȧ(x; θ, gt, F )

{A(x; θ, gt, F )}2
−
∫ π1(dF )

dx aT Ȧ(x; θ, g, F )

{A(x; θ, g, F )}2

]
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→ aTdgΨ̇θ,F (g)h∗,

where

aTdgΨ̇θ,F (g)h∗ = −
∫
π1(dF )

dx

[
aTdgȦ(x; θ, g, F )h∗

{A(x; θ, g, F )}2
− 2aT Ȧ(x; θ, g, F )dgA(x; θ, g, F )h∗

{A(x; θ, g, F )}3

]
,

(31)

and

aTdgȦ(x; θ, g, F )h∗

=

∫
(aT ḟ)

∫
fh∗dx

f2Y
π2(dF ) +

∫
f

∫
(aT ḟ)h∗dx

f2Y
π2(dF )− 2

∫
f(aT ḟY )

∫
fh∗dx

f3Y
π2(dF ).

Verification of condition (A2):
This is verified in LEMMA 1.

Verification of condition (A3):
Let L1 be the space of all real valued measurable functions h(x) with ‖h‖1 =

∫
|h(x)|dx <

∞. Then L1 is a Banach space with the norm ‖ · ‖1. The supnorm is denoted by ‖h‖∞ =
supx |h(x)|.

Since
∫ π1(dF0)

dx = w10g0(x), (26) implies

dgΨθ0,F0(g0)h
∗ =
−w10g0(x)dgA(x; θ0, g0, F0)h

∗

{A(x; θ0, g0, F0)}2
.

By (23), π2(dF0) = w20fY (y; θ0, g0)dy and
∫
f(y|x; θ)dy = 1, for all x, we have

A(x; θ, g0, F0) = 1−
∫

f(y|x; θ0)

fY (y; θ0, g0)
π2(dF0) = 1− w20 = w10.

These equations and (27) imply

dgΨθ0,F0(g0)h
∗ = −w20

w10
g0(x)

∫
f(y|x; θ0)

∫
f(y|x; θ0)h

∗(x)dx

fY (y; θ0, g0)
dy. (32)

The L1 norm of (32) is

‖dgΨθ0,F0(g0)h
∗‖1 =

∫ ∣∣∣∣w20

w10
g0(x)

∫
f(y|x; θ0)

∫
f(y|x; θ0)h

∗(x)dx

fY (y; θ0, g0)
dy

∣∣∣∣ dx
≤ w20

w10

∫
g0(x)

(∫
f(y|x; θ0)

∫
f(y|x; θ0)|h∗(x)|dx
fY (y; θ0, g0)

dy

)
dx

=
w20

w10

∫
|h∗(x)|dx (by Fubini’s theorem and

∫
f(y|x; θ0)dy = 1)

=
w20

w10
‖h∗‖1

From the calculation above, we see that the operator h∗ → dgΨθ0,F0(g0)h
∗ has the operator norm

≤ w20
w10

. Since we assumed w20
w10

< 1, we have condition (A3).
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5·1. Asymptotic normality and efficiency
Here we apply THEOREM 1 to show efficiency of the estimator in Example 3. First, we identify

the efficient score function in the example. Then, we verify conditions (R0)–(R3) in the theorem.
Efficient score function: We show that the candidate function (13) (the solution to the equa-

tion (24)) gives us the efficient score function in Example 3.

THEOREM 4 (THE EFFICIENT SCORE FUNCTION). Suppose gθ,F is the solution to the equa-
tion (24) and p(s, x; θ, g) is given by (11). Then the function

˜̀
θ0,F0(s, x) =

∂

∂θ

∣∣∣∣
θ=θ0

log p(s, x; θ, gθ,F0) (33)

is the efficient score function in the model in Example 3.

Proof. We check conditions (38) and (39) in Theorem 5 in Appendix.
Condition (38) is checked in LEMMA 1.
We verify Condition (39). Note that the candidate function (13) evaluated at (θ, F0) is

gθ,F0(x) =
w10

∫
dF10
dx

1− w20

∫ f(y|x;θ)
fY (y;θ,gθ,F0 )

dF20

. (34)

Let gt(x) be a path in the space of density functions with gt=0(x) = g0(x). Define αt(x) =
gt(x)− g0(x) and write α̇0(x) = ∂

∂t |t=0 αt(x). Then

∂

∂t

∣∣∣∣
t=0

∫
log p(s, z; θ, gθ,F0 + αt)dF0

=
∂

∂t

∣∣∣∣
t=0

[
w10

∫
{log f(y|x; θ) + log(gθ,F0 + αt)}dF10 + w20

∫
log fY (y; θ, gθ,F0 + αt)dF20

]
= w10

∫
α̇0(x)

gθ,F0(x)
dF10 + w20

∫ ∫
f(y|x; θ)α̇0(x)dx

fY (y; θ, gθ,F0)
dF20

=

∫
α̇0(x)dx =

∂

∂t

∣∣∣∣
t=0

∫
gt(x)dx = 0 (by (34) and since gt(x) is a density). �

Efficiency of the profile likelihood estimator: Let ˜̀
θ,F (s, x) be the score function given by

(33) with θ0 and F0 are replaced by θ and F . LEMMA 1 shows that the score function evaluated
at (θ0, F0) is the efficient score function in Example 3.

We verify conditions (R0), (R1), (R2), and (R3) of THEOREM 1 so that we can apply the
theorem to show that the solution θ̂n to the estimating equation

2∑
s=1

n∑
i=1

˜̀̂
θn,Fn

(s,Xsi) = 0

is asymptotically linear estimator with the efficient influence function, i.e., (16) holds. This shows
the efficiency of the MLE based on the profile likelihood in this example.
Condition (R0): This condition is verified by LEMMA 1 and THEOREM 4.
Condition (R1): As we assumed in THEOREM 3, we assume that

(T1) For all θ ∈ Θ, the function f(y|x; θ) is twice continuously differentiable with respect to θ.



On differentiability of implicitly defined function 15

The maps

g → log g(x)

and

g → fY (y; θ, g) =

∫
X
f(y|x; θ)g(x)dx

are Hadamard differentiable (cf. Gill (1989)). It follows that the log-likelihood function

log p(s, z; θ, g) = 1{s=1}{log f(y|x; θ) + log g(x)}+ 1{s=2} log fY (y; θ, g)

is Hadamard differentiable with respect to g and, by assumption (T1), it is also twice continu-
ously differentiable with respect to θ. We verified the function gθ,F is Hadamard differentiable
with respect to F and twice continuously differentiable with respect to θ. By the chain rule and
product rule of Hadamard differentiable maps, the log-likelihood log p(s, x; θ, gθ,F ) is Hadamard
differentiable with respect to F and twice continuously differentiable with respect to θ. Therefore
we verified condition (R1).
Derivatives of log-likelihood: The log-likelihood function for one observation under consider-
ation is

log p(s, z; θ, gθ,F ) = 1{s=1}{log f(y|x; θ) + log gθ,F (x)}+ 1{s=2} log fY (y; θ, gθ,F ). (35)

The derivative of the log-likelihood with respect to θ is

˜̀
θ,F (s, z) =

∂

∂θ
log p(s, z; θ, gθ,F )

= 1{s=1}

{
ḟ

f
+
ġθ,F
gθ,F

}
+ 1{s=2}

ḟY + dgfY (ġθ,F )

fY
. (36)

The second derivative of the log-likelihood function with respect to θ is

∂

∂θT
˜̀
θ,F (s, z) =

∂2

∂θ ∂θT
log p(s, z; θ, gθ,F )

= 1{s=1}

{
f̈

f
− ḟ ḟT

f2
+
g̈θ,F
gθ,F

−
ġθ,F ġ

T
θ,F

g2θ,F

}

+1{s=2}

{
f̈Y + dgḟY (ġθ,F )

fY
−
ḟY ḟ

T
Y + ḟY dgfY (ġTθ,F )

f2Y

+
dgḟ

T
Y (ġθ,F ) + dgfY (g̈θ,F )

fY
−
dgfY (ġθ,F )ḟTY + dgfY (ġθ,F )dgfY (ġTθ,F )

f2Y

}
(37)

Here we used the notations ḟY = ḟY (y; θ, gθ,F ), f̈Y = f̈Y (y; θ, gθ,F ), dgfY (gθ,F ) =∫
f(y|x; θ)gθ,F (x)dx, and dgḟY (gθ,F ) =

∫
ḟ(y|x; θ)gθ,F (x)dx.

Condition (R2): We assume that

(T2) There is no a ∈ Rd such that aT ḟf (y|x; θ) is constant in y for almost all x.

The term ġθ,F
gθ,F

(x, θ0, F0) is a function of x. Therefore, by Equation (36) and assumption (T2),

there is no a ∈ Rd such that aT ˜̀
θ,F (1, z) is constant in y for almost all x. By THEOREM 1.4 in

Seber and Lee (2003), E1,θ0,F0(˜̀
θ0,F0

˜̀T
θ0,F0

) is non-singular with the bounded inverse.



16 YUICHI HIROSE AND JEAN-MARIE AUBRY

Conditions (R3): Since verification of Condition (R3) require more assumptions and it does not
add anything new, we omit this. Instead, we assume:

(T3) LetF be the set of cdf functions and for some ρ > 0 define Cρ = {F ∈ F : ‖F − F0‖∞ ≤ ρ}.
The class of function {

˜̀
θ,F (s, z) : (θ, F ) ∈ Θ× Cρ

}
is Pθ0,g0-Donsker with square integrable envelope function and the class{

∂

∂θT
˜̀
θ,F (s, z) : (θ, F ) ∈ Θ× Cρ

}
is Pθ0,g0-Glivenko-Cantelli with integrable envelope function.

6. DISCUSSION

We have shown the differentiability of implicitly defined function which we encounter in the
maximum likelihood estimation in semiparametric model. We assumed the implicitly defined
function is the solution to the operator equation (4) and in THEOREM 2 we obtained the deriva-
tives of the (implicitly defined) function. In some application, it may be difficult to show the
condition (A3) in the theorem (that is ‖dηΨθ0,F0(η0)‖ < 1). The future work is to relax the con-
dition to ‖dηΨθ0,F0(η0)‖ <∞. Once the differentiability of the implicitly defined function has
been established, the results in Hirose (2010) (we summarized in SECTION 3) are applicable.

APPENDIX

To verify Condition (R0), the following theorem may be useful. This is a modification of
the proof in Breslow, McNeney and Wellner (2000) which was originally adapted from Newey
(1994).

THEOREM 5. We assume the general semi-parametric model given in “Introduction” with the
density pθ,η(x) = p(x; θ, η) is differentiable with respect to θ and Hadmard differentiable with
respect to η. Suppose gt is an arbitrary path such that gt=0 = g0 and let αt = gt − g0. If gθ,F is
a function of (θ, F ) such that

gθ0,F0 = g0 (38)

and, for each θ ∈ Θ,

∂

∂t

∣∣∣∣
t=0

E0 [log p(x; θ, gθ,F0 + αt)] = 0, (39)

then the function ˜̀
θ0,F0(x) = ∂

∂θ |θ=θ0 log p(x; θ, gθ,F0) is the efficient score function.

Proof. Condition (39) implies that

0 =
∂

∂θ

∣∣∣∣
θ=θ0

∂

∂t

∣∣∣∣
t=0

E0 [log p(x; θ, gθ,F0 + αt)]

=
∂

∂t

∣∣∣∣
t=0

E0

[
∂

∂θ

∣∣∣∣
θ=θ0

log p(x; θ, gθ,F0 + αt)

]
. (40)
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By differentiating the identity∫ (
∂

∂θ
log p(x; θ, gβ,F0 + αt)

)
p(x; θ, gβ,F0 + αt)dx = 0

with respect to t at t = 0 and θ = θ0, we get

0 =
∂

∂t

∣∣∣∣
t=0,θ=θ0

∫ (
∂

∂θ
log p(x; θ, gθ,F0 + αt)

)
p(x; θ, gθ,F0 + αt)dx

= E0

[
˜̀
θ0,F0(x)

(
∂

∂t

∣∣∣∣
t=0

log p(x; θ0, gt)

)]
( by (38))

+
∂

∂t

∣∣∣∣
t=0

E0

[
∂

∂θ

∣∣∣∣
θ=θ0

log p(x; θ, gθ,F0 + αt)

]

= E0

[
˜̀
θ0,F0(x)

(
∂

∂t

∣∣∣∣
t=0

log p(x; θ0, gt)

)]
( by (40)). (41)

Let c ∈ Rm be arbitrary. Then, it follows from Equation (41) that the product c′ ˜̀θ0,F0(x) is
orthogonal to the nuisance tangent space Ṗg which is the closed linear span of score functions of
the form ∂

∂t |t=0 log p(x;β0, gt).
Using Condition (38), we have

˜̀
θ0,F0(x) =

∂

∂θ

∣∣∣∣
θ=θ0

log p(x; θ, g0) +
∂

∂β

∣∣∣∣
θ=θ0

log p(x; θ0, gθ,F0)

= ˙̀
θ0,g0(x)− ψθ0,g0(x),

where ˙̀
θ0,g0(x) = ∂

∂θ |θ=θ0 log p(x; θ, g0) is the score function for θ and ψθ0,g0(x) =

− ∂
∂θ |θ=θ0 log p(x; θ0, gθ,F0). Finally, c′ ˜̀θ0,F0(x) = c′ ˙̀θ0,g0(x)− c′ψθ0,g0(x) is orthogonal to the

nuisance tangent space Ṗg and c′ψθ0,g0(x) ∈ Ṗg implies that c′ψθ0,g0(x) is the orthogonal pro-
jection of c′ ˙̀θ0,g0(x) onto the nuisance tangent space Ṗg. Since c ∈ Rm is arbitrary, ˜̀

θ0,F0(x) is
the efficient score function.
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