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Abstract

Agresti & Liu (2001) discussed modelling strategies for a multiple response variable, a
categorical variable for which respondents can select any number of outcome categories.
This article discusses modelling strategies of a repeated multiple response variable, a cat-
egorical variable for which respondents can select any number of categories on repeated
occasions. We consider each of the responses as a binary response and model the mean
binary responses with two approaches: A marginal model approach and a mixed model
approach. For the marginal model approach, we propose another more efficient estimation
method based on groupwise correlation structures applying generalised estimating equa-
tions (GEE). A simulation study evaluates the performance of the new groupwise method.
We illustrate different approaches using an example.

Keywords: Multiple Responses, Repeated Measurements, GLM, GEE, GLMM

1 Introduction

Surveys often contain qualitative variables for which respondents may select any number out
of c outcome categories. The respondents are asked to “tick all that apply” on a list of the
outcome categories. Categorical variables that summarise this type of data are called multiple

response variables. As an example, for the question “When you go out to bars, do you go out
to...?” with possible responses (a) Socialise with friends, (b) Meet new people, (c) Listen to
music, (d) Get drunk, (e) Other (please specify), respondents would be introduced to select
whichever of the outcomes apply. Each outcome category is referred to as an item (Agresti &
Liu 1999).

Multiple responses have been considered in the literature by various authors. For in-
stance, Loughin & Scherer (1998) developed a large–sample weighted chi-squared test and a
small–sample bootstrap test for the independence between each of the c items and an explana-
tory variable. Agresti & Liu (1999, 2001) discussed different modelling strategies to describe
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the association between items and explanatory variables. When the data are stratified by a
third variable, Bilder & Loughin (2002) provided a test for the conditional multiple marginal
independence to detect whether the group and items are marginally independent given the
stratification variable. Furthermore, Bilder & Loughin (2004) gave a test for marginal inde-
pendence between two categorical variables with multiple responses. Besides the modelling
strategies and testing methods, Liu & Suesse (2008) presented two methods (GEE and Mantel-
Haenszel) to make inferences across multiple responses when data include highly stratified
variables. None of the above papers considered the situations in a longitudinal manner where
respondents were asked on several occasions. This paper discusses modelling strategies gen-
eralised from the ones introduced by Agresti & Liu (2001) to analyse the repeated multiple
response data when the multiple response data were collected at several time points.

Agresti & Liu (2001) treated the responses for each of the items as binary responses (being
selected or not). Then, they modelled these correlated responses using the marginal model
approach and the mixed model approach. For the repeated multiple responses, we also treat
the responses for each of the items as binary responses. Yet, these binary responses are
correlated in two levels, across both items and different time points.

Section 2 considers the marginal model approach for repeated multiple response data.
We primarily focus on generalised estimating equations and consider a variety of possible
correlation structures. We also propose a more efficient groupwise method assuming different
group correlation parameters in Section 3. Section 4 gives several feasible fitting techniques
for the mixed model approach. In Section 5, we conduct a simulation study to investigate the
performance of the new groupwise method. Section 6 illustrates methods for a survey data set
about the choice of bars based on their features. The final section finishes with a discussion.

2 Marginal Modelling

Let yijt = 1 if subject i = 1, . . . , n selects category j = 1, . . . , c at time point or occasion
t = 1, . . . , T and yijt = 0 otherwise. Let yi = (yT

i1, . . . ,y
T
iT )

T denote the ith subject’s 2c·T

response profile for c items and T time points, where yit = (yi1t, yi2t, . . . , yict)
T . Note that

superscript T denotes the transpose of a vector/matrix and subscript T refers to the number
of time points. Denote the mean of yijt by πj|it, the probability of a positive response on
item j at occasion t by the ith subject. Define similarly the mean of yi as πi. Let Xi =
(Xi0,Xi1, . . . ,XiT ) be a vector of covariates of the ith subject, where Xit, t = 1, . . . , T are the
time–variant covariates and Xi0 the time–invariant covariates.

When T = 1, Agresti & Liu (2001) modelled the mean πi of yi in terms of the covariates
Xi. For the general case T ≥ 1, we model the mean response πj|it in terms of the covariates
Xit, t ≥ 0 by

h(πj|it) = αjt +Xi0β0j +Xitβjt = Zijtβ, (1)

where h(·) is the link function, αjt is the j-th intercept parameter at time t, Zijt is the
corresponding design matrix depending on Xi, and β := (α11, . . . , αcT , β

T
01, . . . , β

T
cT )

T the
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vector containing all parameters. For a special case of using the logit link, the model becomes

log

(

πj|it

1− πj|it

)

= αjt +Xi0β0j +Xitβjt.

There are several fitting techniques for model (1). Naively, one can assume independence
between all items and occasions and then use ordinary software for generalised linear models
(McCullagh & Nelder 1989). However, assuming independence does not give proper standard
error estimates for the parameter estimators.

Alternatively, model (1) can be expressed as a generalised log-linear model and the max-
imum likelihood (ML) method (Lang & Agresti 1994, Lang 1996) can be used to yield pa-
rameter estimates for β. Agresti & Liu (1999) showed the ML approach for the special case
of T = 1. An extension of the generalised log-linear model given by Lang (2005) allows any
smooth link function. The ML method treats counts from the 2c·T response profile for each
different covariate setting as a multinomial distribution. It maximises the multinomial like-
lihood subject to constraints satisfying the model. Because the number 2c·T is usually very
large, the number of observations for many of the 2c·T categories will be very small (e.g. zero).
This sparseness is even worse when some covariates are continuous. It causes problems on
the ML fitting algorithm. The ML approach is plausible only when the number of subjects is
large, 2c·T is small and all covariates are categorical with few levels.

Besides the ML approach, Agresti & Liu (1999) showed another fitting procedure using
the generalised estimation equations (GEE) (Liang & Zeger 1986). The GEE method fits
marginal models simultaneously and incorporates a chosen correlation structure. It is an
extension of the quasi-likelihood method (Wedderburn 1974) for multivariate data. Denote
Var(yi) = fi ·φ−1 with variance function fi = f(πi) (= πi(1cT−πi) for binary responses, where
1cT is a vector ones of length cT ), and the scale or dispersion parameter by φ. Suppose model
(1) is true, then the GEE estimates are obtained by computing the root of the generalised
estimation equations

n
∑

i=1

Ui = 0 with Ui = MT
i V

−1
i ri,

with Mi = ∂πi/∂β, Vi = AiRi(α)Ai and ri = (yi − πi). The dimension of matrix Mi

is cT × p, where p is the number of parameters in β. Matrix Ai =
√
fi is diagonal of size

cT × cT and Ri(α) is the cT × cT correlation matrix for subject i (i = 1, . . . , n) depending
on correlation parameter(s) α. The correlation matrix is based on a “working guess” about
the correlation structure of the items across different occasions. Preisser & Qaqish (1996)
suggested the iterated weighted least squares method to obtain the vector of estimators β̂.
One can adjust the standard error of the parameter estimators to reflect what actually occurs
for the sample data using a “sandwich” method.

We consider specific choices of the correlation structure Ri(α) for multiple response data
and repeated multiple response data. Choosing a good correlation structure is essential to ob-
tain good variance estimates and more efficient parameter estimates for β̂, e.g. see simulation
study in Liang & Zeger (1986).
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Denote the correlation structure Ri = Corr(yi) = R by

R =











R11 R12 · · · R1T

R12 R22 · · · R2T
...

...
...

R1T R2T · · · RTT











,

where the indices t1 and t2 of Rt1t2 ∈ R
c×c refer to two different occasions. We assume that

all subjects have the same correlation structure. The sub-matrix Rtt refers to the correlation
structure across different items at a given occasion t and the sub-matrix Rt1t2 refers to the
correlation structure across different items at a pair of occasions t1 and t2. They have the
form:

Rtt =











1 Rtt,12 · · · Rtt,1c

Rtt,12 1 · · · Rtt,2c
...

...
...

Rtt,1c Rtt,2c · · · 1











Rt1t2 =











Rt1t2,11 Rt1t2,12 · · · Rt1t2,1c

Rt1t2,21 Rt1t2,22 · · · Rt1t2,2c
...

...
...

Rt1t2,c1 Rt1t2,c2 · · · Rt1t2,cc











Note, generally matrix Rt1t2 is not symmetric, but Rtt is.

When T = 1, the matrix R reduces to R11 and we omit index t referring to the occasions.
The most common correlation structures between items include

• independence (items): Rj1j2 = 0 for all j1 6= j2 (0 parameter)

• exchangeable (items): Rj1j2 = α for all j1 6= j2 (1 parameter)

• unstructured (items): totally unspecified Ri,j1j2 = αj1,j2 (12c(c− 1) parameters)

and we estimate the parameters by the method of moments.

For repeated multiple responses (T > 1), we can assign the same correlation structure
to R as the one mentioned above. In such a way, we can not distinguish between occasions
and items. It is more appropriate to consider different structures for the submatrices of Rtt

and Rt1t2 . Every submatrix Rtt can have the structures independence, exchangeable, and
unstructured, as we considered for the special case of T = 1. For the off-diagonal matrices
Rt1t2(≡ Rt2t1) with t1 6= t2, the diagonal elements do not usually equal one (Rt1t2,jj 6= 1)
and the symmetry may not hold, i.e., Rt1t2,j1j2 6= Rt1t2,j2j1 for j1 6= j2 and t1 6= t2. Thus,
the structure of Rtt does not apply. Instead, we define the following correlation structures for
Rt1t2 :

• independence (items): Rit1t2,j1j2 = 0 ∀j1, j2 = 1, . . . , c (0 parameter)

• exchangeable (items): Rit1t2,j1j2 = α ∀j1, j2 = 1, . . . , c (1 parameter)
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• unstructured (items): totally unspecified (c2 parameters).

This paper considers a common structure of Rtt and Rt1t2 for all t and t1 6= t2. One might
assume different structures for different t. See Suesse (2008) for various choices.

For given time points, the correlation structure from the above options focuses on the
dependence between items j1 and j2. We denote such a structure by “structure (items)”.
Alternatively, the correlation structure can be chosen based on the the dependence over time
for given items j1 and j2. We denote such a structure by “structure (time)”. The options
include:

• exchangeable (time): Rt1t2,j1j2 = αj1j2 (1 parameter)

• autoregressive (time): Rt1t2,j1j2 = α
|t1−t2|
j1j2

(1 parameter)

• unstructured (time): Rt1t2,j1j2 = αt1t2,j1j2 (T (T + 1)/2 parameters for j1 6= j2 and
T (T − 1)/2 parameters for j1 = j2 ).

The option of exchangeable (time) and exchangeable (items) is equivalent to exchangeable for
the whole matrix R. Similarly, the option of unstructured (time) and unstructured (items) is
equivalent to assuming unstructured for the whole matrix R.

Combining the structures by assuming conditional structures for items given time points
and for time points given items, seems a better approach than considering the structures Rtt

and Rt1t2 separately. In particular, the higher the number of time points is, the more plausible
it is to take the time dependence structure into account.

3 Groupwise Correlation Estimation for GEE

Liang & Zeger (1986) assumed the correlation structure to be equal for all subjects and
estimated the correlation parameters α using the method of moments. This assumption is
practical in terms of simplicity, but unrealistic. We assume the correlation model that allows
the correlation parameters α to vary for different groups (e.g., age, sex, etc). Suppose that
there are a finite number of groups. Let the number of subjects in group g (g = 1, . . . , G) be
ng with

∑G
g=1 ng = n. Assume limn→∞ ng/n = ag > 0. The correlation parameters for group

g are denoted by αg. The GEE estimators have the following property:

Theorem 3.1 (“groupwise method”). Under mild regularity conditions and given that :

1. α̂g is ng
1/2 consistent given β and φ for g = 1, . . . , G

2. φ̂ is n1/2 consistent given β,

3. |∂α̂g/∂φ| is Op(1),

then n1/2(β̂ − β) is asymptotically multivariate Gaussian with zero mean and variance

lim
n→∞

nJ−1
1 J2J

−1
1
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where

J1 =

n
∑

i=1

MT
i V

−1
i Mi and J2 =

n
∑

i=1

MT
i V

−1
i Cov(yi)V

−1
i Mi.

Liang & Zeger (1986) showed the proof for a special case of Theorem 3.1, where all subjects
have the same correlation structure. Appendix A gives details of the proof for Theorem 3.1.

We label the groupwise correlation estimation method as groupwise method and the method
assuming the same correlation parameters for all subjects as standard method. For the group-

wise method, we require αg to be n
1/2
g consistent. In other words, we require ng to be rea-

sonable large. In Section 5, we conduct a simulation study to evaluate whether the groupwise
method leads to more efficient estimators for β.

4 Generalised Linear Mixed Models

The marginal model (1) is called a population–averaged model, which focuses on the marginal
distribution of responses. Instead of assuming a particular distribution of responses, the GEE
method specifies only the first two moments. The mean is linked to the predictor and the
working correlation is incorporated to obtain the estimators. In contrast, generalised linear
mixed models (GLMM) additionally include a subject specific effect, the random effect. This
model is referred to as subject–specific modelling, since the model parameters are defined at
the subject level.

Let ui be the random effect vector for subject i and let Qi be the design matrix for the
random effect. Conditional on ui, the distribution of yijt is assumed to be from the exponential
family type with density f(yijt|ui;β) and conditional mean µijt = E(yijt|ui). Given ui, the
responses are independent on the same subject, which is known as the local independence
assumption. Also, the responses are independent for different subjects. In our case, the
distribution of yijt is binary and µijt ≡ πj|it. The linear predictor for a GLMM is

h(πj|it) = Zijtβ +Qijtui,

where Zijt, h(·) and β have the same meaning as in model (1). The random effects ui of
dimension r (r ≤ c × T ) are assumed to be multivariate normal N(0,Σ) with unknown
positive definite covariance matrix Σ, where the density is denoted by f(ui;Σ). By the local
independence assumption, the conditional density of y given u has the form

f(y|u;β) =
n
∏

i=1

f(yi|ui;β) with f(yi|ui;β) =

c
∏

j=1

T
∏

t=1

f(yijt|ui;β). (2)

We can also write

f(u;Σ) =

n
∏

i=1

f(ui;Σ), (3)

where y = (y1, . . . ,yn) and u = (u1, . . . ,un).

6



We maximise the likelihood function l(β,Σ;y)

l(β,Σ;y) = f(y;β,Σ) =

∫

f(y|u;β)f(u;Σ)du (4)

to obtain ML parameter estimates for β and Σ. This likelihood function is often called
marginal likelihood after integrating out the random effects (Agresti 2002).

The integral usually cannot be solved analytically and numerical methods must be used.
Gauss-Hermite quadrature methods directly approximate the integral (4). They work well for
small dimension r of the random effect distribution, but become infeasible for a large r, because
the number of quadrature points used to approximate the integral increases exponentially with
r.

Some methods using the approximate likelihood are available (Stiratelli, Laird & Ware
1984, Schall 1991, Breslow & Clayton 1993, Zeger, Liang & Albert 1988, Goldstein 1991).
However, most of them can yield poor estimates, in particular for first order expansions
(Breslow & Lin 1995). Raudenbush, Yang & Yosef (2000) introduced a fast method combining
a fully multivariate Taylor series expansion and a Laplace approximation, yielding accurate
results. Other possible approaches include penalised log-likelihood equations (Schall 1991,
Breslow & Clayton 1993), Bayesian mixed models (Fahrmeir & Tutz 2001) and Semi- or
Nonparametric ML (Hartzel, Agresti & Caffo 2001).

This paper considers the indirect maximisation with the EM (expectation-maximisation)
algorithm. One can treat the random effects u as unobserved data. Let Ψ = (βT ,ΣT )T

that represents both the model parameters β and the parameters of the covariance matrix
Σ. Suppose that both y and u are observed, the complete likelihood becomes f(y,u;β,Σ) =
f(y|u;β)f(u;Σ). The log-likelihood is (McCulloch 1997)

log f(y,u;β,Σ) =
n
∑

i=1

log f(yi|ui;β) + log f(ui;Σ). (5)

The EM algorithm has two steps. Define

Q(0)(Ψ|Ψ′) = E(log f(y,u;Ψ)|y;Ψ′) =

∫

log f(y,u;Ψ)f(u|y;Ψ′)du,

where Ψ′ is an old estimate in an iteration scheme and Ψ is the new estimate. First we
compute the expectation in Q(0)(Ψ|Ψ′) (E-step) and then we maximise this expression (M-
step) with respect to Ψ for given Ψ′. Since the first term of the log-likelihood (5) depends on
β and the second on Σ, the form is equivalent to

Q(0)(Ψ|Ψ′) = E(log f(y|u;β)|y;Ψ′) + E(log f(u;Σ)|y;Ψ′).

Therefore the M-step and E-step can be performed separately for β and Σ.

McCulloch (1997) proposed several algorithms for the maximisation of the marginal like-
lihood using the EM algorithm. For our model fitting purposes, we use a combination of his
Monte-Carlo-Newton-Raphson and simulated maximum likelihood algorithms. To approx-
imate the integral numerically by Monte-Carlo approximation, we sample from f(u|y;Ψ′)
using the algorithm given by Booth & Hobert (1999) to control the Monte-Carlo error.

7



5 Simulation Study

In this section, we conduct a simulation study to investigate the performance of the groupwise
correlation for the GEE method. Consider the model

log

(

πj|ig

1− πj|ig

)

= Xigjβj , i = 1, ..., ng , g = 1, . . . , G, j = 1, ..., c, (6)

where G is the number of groups and c is the number of items. For simplicity, we consider
only one time point and choose G = 4, c = 3. The correlation structure for the gth group has
the following form

Rig =





1 Rig,12 Rig,13

Rig,12 1 Rig,23

Rig,13 Rig,23 1



 .

All subjects in a given group have the same correlation structure, i.e., R1g = R2g = . . . = Rngg

for all g = 1, . . . , G.

The simulation study includes various cases of the exchangeable and unstructured corre-
lation structures. Table 1 shows the correlation structures considered here. The first 4 cases
have exchangeable correlation structures and the last four cases have unstructured correlation
structures.

Table 1: Correlation structures for model (6)

index vec(Rig) = (Rig,12,Rig,13, Rig,23)

1 (-0.1, -0.1, -0.1)
2 (0.1, 0.1, 0.1)
3 (0.3, 0.3, 0.3)
4 (0.5, 0.5, 0.5)
5 (0.1, 0.3, 0.5)
6 (0.2, 0.4, 0.6)
7 (0.1, 0.2, 0.3)
8 (0.3, 0.4, 0.5)

The simulation study takes samples from the joint distribution of (Yig,1, Yig,2, Yig,3), where
Yig,j indicates whether subject i in group g selects item j. If a subject selects item j, then
Yig,j = 1; otherwise, Yig,j = 0. The marginal distributions of {Yig,j,∀j} need to satisfy model
(6) and the correlations between Yig,j1 and Yig,j2 for all j1 6= j2 = 1, 2, 3 have to meet the
chosen correlation structure. For model (6), the covariates Xigj were drawn from a standard
normal distribution and were fixed in advance for all simulations.

In order to compute the joint distribution, first we calculate the pairwise probability
Pr(Yig,j1 = s, Yig,j2 = t) for s, t = 0, 1 from the correlation between Yig,j1 and Yig,j2 and the
marginal probabilities πj1|ig = Pr(Yig,j1 = 1) and πj2|ig = Pr(Yig,j2 = 1). Since Corr(Yig,j1 , Yig,j2) =

Cov(Yig,j1 , Yig,j2)/ (Var(Yig,j1)
1/2 Var(Yig,j2)

1/2) and Cov(Yig,j1 , Yig,j2) =Pr(Yig,j1 = 1, Yig,j2 =
1) − πj1|igπj2|ig, we can obtain the pairwise probability Pr(Yig,j1 = 1, Yig,j2 = 1). Then we
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can find the other pairwise probabilities Pr(Yig,j1 = s, Yig,j2 = t) for (s, t) = (1, 0), (0, 1), (0, 0)
from Pr(Yig,j1 = 1, Yig,j2 = 1), πj1|ig and πj2|ig.

Finally, we compute joint distributions (Yig,1, Yig,2, Yig,3) (multinomial distribution with
2c outcomes for each setting ig) from the complete pairwise distributions for all pairs of items
using the iterative proportional fitting algorithm. The generation of the joint distributions
subject to the marginal distribution satisfying model (6) is analogous to the one applied in
the simulation study by Bilder, Loughin & Nettleton (2000).

We draw n (= 50 and 200) observations yig = (yig,1, yig,2, yig,3)
T randomly from either

of the G = 4 groups according to the joint probability distributions (Yig,1, Yig,2, Yig,3). We
require ng > 5 to achieve better convergence, because the groupwise method is not applicable
for small group sizes ng. Then we fit model (6) by GEE, using the standard method and the
groupwise method with G = 4, respectively.

Table 2 shows the simulation results for the GEE method for β = (β1, β2, β3)
T = (0.1, 0.2,

0.3)T . The first column shows the total sample size n. The second column shows the index of
the true correlation structure Rig for each of the g groups, where the index is defined in Table
1. For example, if Ri2 = 4, then the second group has an exchangeable correlation structure
with α = 0.5.

We define the relative efficiency RE(β̂) of β̂ = (β̂1, . . . , β̂c)
T as

RE(β) =

∑c
j=1 E(β̂

TRUE
j − βj)

2

∑c
j=1 E(β̂j − βj)2

=

∑c
j=1m.s.e.(β̂TRUE

j )
∑c

j=1m.s.e.(β̂j)
,

where β̂j refers to the estimate of βj for the given working correlation structure and β̂TRUE
j

stands for the estimated βj using the correct (true) correlation structure. To obtain β̂TRUE
j ,

we use the correct correlation of the simulated distribution instead of the correct “working”
correlation. This ensures that β̂TRUE

j has the smallest mean square error. The relative

efficiency of 1.00 is the highest value. Table (2) shows the relative efficiency RE(β̂) when the
model is fitted using the working correlation structure as unstructured (denoted by “unstr”),
exchangeable (“exch”) and independence (“ind”), respectively.

For the groupwise method, the correlation parameters vary for different groups. For in-
stance, there are 4 parameters for the exchangeable structure. Unlike the groupwise method,
the standard method assumes that the correlation parameters remain the same for different
groups. Therefore, there is only 1 parameter for the exchangeable structure.

We simulated 10, 000 data sets for each of the configurations. In comparing the perfor-
mance, a ∗ symbol in the table indicates that the estimators are most efficient among these
methods. The results show that for the exchangeable correlation structure, the groupwise
method gives more efficient parameter estimators provided different groups have different cor-
relation parameters (e.g., correlation structure = (1, 1, 4, 4) or (1, 2, 3, 4)). The estimators
are more efficient when the sample size is larger. The advantage of choosing the groupwise
method using unstructured correlation is not obvious when the true correlation parameters
vary for different groups. One reason is that for the sample size of 50, we don’t have enough
observations to estimate 3 correlation parameters for each group, because on average each
group has only about 12 subjects. The relative efficiency increases when the sample size in-
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Table 2: Relative efficiency (RE(β̂)) with β = (0.1, 0.2, 0.3)T for multiple response data using correlation structures independence
(ind), unstructured (unstr) and exchangeable (exch), with both the standard and groupwise methods (G = 4)

correlation working correlation

structure standard method groupwise method

n Ri1,Ri2,Ri3,Ri4 unstr exch ind unstr exch

50 4, 4, 4, 4 0.958 0.983∗ 0.662 0.907 0.964

50 1, 1, 4, 4 0.819 0.843 0.759 0.884 0.948∗

50 1, 2, 3, 4 0.873 0.898 0.814 0.863 0.937∗

50 5, 5, 5, 5 0.959∗ 0.895 0.776 0.833 0.844

50 5, 5, 6, 6 0.948∗ 0.868 0.693 0.834 0.820

50 5, 6, 7, 8 0.946∗ 0.906 0.762 0.870 0.896

200 4, 4, 4, 4 0.993 0.999∗ 0.708 0.975 0.995

200 1, 1, 4, 4 0.870 0.874 0.784 0.973 0.991∗

200 1, 2, 3, 4 0.912 0.918 0.826 0.966 0.989∗

200 5, 5, 5, 5 0.992∗ 0.930 0.823 0.971 0.922

200 5, 5, 6, 6 0.986∗ 0.915 0.765 0.967 0.912

200 5, 6, 7, 8 0.979∗ 0.930 0.799 0.969 0.944
∗: The most efficient estimators.
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creases to 200. The groupwise efficiencies for the unstructured correlation are similar to the
ones in the standard method. The independent correlation structure has the lowest efficiency
across all different configurations.

Generally, we suggest the groupwise method if the exchangeable working correlation struc-
ture is chosen. The more parameters the working correlation requires, the bigger the group
sizes have to be to gain efficiency advantages from the groupwise method over the standard
method. If the unstructured correlation is used, we suggest the standard method, unless the
number of subjects in each group is very large. Similar results hold for the repeated multiple
response with T > 1 (Suesse 2008).

6 Example

Students of a statistics course at the Victoria University of Wellington in New Zealand were
asked by the second author to complete a questionnaire (in Appendix B) on 3 different oc-
casions: March 2004, July 2005 and October 2005. The students were asked to tick their
favourite bar and also to provide some personal information, such as work status, smoker/non-
smoker, etc. The student’s sex, major, and age were given by the student record. Also, the
study recorded the features of the bars separately. The aim is to get insight into the relation-
ship between the choice of favourite bar based on its features and possible covariates, such as
sex, age, etc. The data have T = 3 time points and have various bar features to be considered
as items. Here, we only consider c = 3 items, namely “drink deals” (item 1), “pool table”
(item 2) and “sports TV” (item 3). We assign a positive response at occasion t for item j (e.g.
“drink deals”), when the student’s favourite bar at occasion t has a feature j (e.g. “drink
deals”).

For the marginal model, we fit model (1) using the logit link. Based on the backward
elimination model selection which removes non-significant terms one by one, the final model
includes factors “work” (working=1/ not working=0, Question 13), “friends” (yes=1/ no=0,
Question 5a), “sex” (male=1/ female=0), “pool” (yes=1/ no=0, Question 4), and “smoker”
(yes=1/ no=0, Question 12). Also, the final model has a common effect βj = β1j = · · · = βTj

across different time points, with the form

log

(

πj|it

1− πj|it

)

= αj +Xi0β0j +Xitβj.

In the final model, the factors “work”, “friends”, and “sex” are significant for item 1; “pool”
and “sex” are significant for item 2; and “smoker” and “sex” are significant for item 3.

To demonstrate the generalised linear mixed models in Section 4, we use the same covari-
ates as in the marginal final model, with the form

log

(

πj|it

1− πj|it

)

= αj +Xi0β0j +Xitβj + uij, (7)

where ui = (ui1, . . . , uic)
T . The uij is a random effect for subject i and item j. We as-

sume that the random effect vector ui ∈ R
c follows a multivariate normal distribution. In
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the literature, as in Agresti & Liu (2001), the mixed model often includes one single uni-
variate random effect ({ui}) to account for dependency between items and occasions, but
this seems too stringent. On the contrary, allowing cT correlated random effects (e.g.,
{uijt,∀j = 1, . . . , c;∀t = 1, . . . , T}), one for each component, does not seem appropriate
either due to the large numbers of variance and covariance parameters in Σ. For this exam-
ple, because we expect that the πj|it vary more over items than over time, so we choose the
random effects that allow a general covariance structure among different items and that allow
the structure to remain the same across different time points.

Table 3 shows the parameter estimates for both GEE and GLMM approaches. For GEE,
the table includes various correlation structures, such as “independent”, “unstructured”, “ex-
changeable”, “unstr(item) – exch(time)”, and “exch(item) – unstr(time)” for the standard
method. We also include the groupwise method (denoted by G) using G = 2 groups formed
by variable “sex”. The structure “unstr(items) – exch(time)” uses the unstructured setting
for the correlation between items and the exchangeable setting for the correlation between
time points. Similarly, “exch(items) – unstr(time)” uses the exchangeable setting for the cor-
relation between items and the unstructured setting for the correlation between time points.
Unfortunately, GEE groupwise method only converges for “exch(items) – unstr(time)”, not
for “unstr(items) – exch(time)”. Table 3 also shows the GEE groupwise method when the
correlation structure is “exchangeable” across all items and time points. For the groupwise
method, the variable “pool” has a smaller p-value than the p-value for the standard method.
For instance, for the structure “ex(items) – unstr(time)”, the standard method yields the
p-value 0.168 (not significant) and the groupwise method gives a p-value of 0.052 that reaches
a moderate significance level.

In summary, we discuss the parameter estimates for structure “exch(items) – unstr(time)”
with G = 2. The odds of selecting a bar offering drink deals (Pool Table/ Sports TV) are
1/ exp(−0.645) = 1/0.52 = 1.91 (1.58/ 2.31) times higher for females than for males, given
other factors at a fixed level. Females seem to be more aware of the bar’s features and select a
bar as most favourite based on the bar’s features. The odds for working people choosing a bar
that offers drink deals are exp(0.553) = 1.77 times those for non-working people. Similarly, the
odds for people who go out to socialize choosing drink deals becomes exp(0.575) = 1.78 times
those who do not. The odds of selecting a bar offering a pool table are exp(−0.792) = 0.45
times for those who enjoy playing pool than for those who do not. We probably would expect
the opposite, but eventually the pool table is not of high importance for selecting a most
favourite bar for those who do enjoy playing pool. For people who smoke the odds of selecting
a bar offering some sorts of Sports TV are exp(0.381) = 1.46 times those for people not
smoking. This is not too unexpected, because some people might see a link between Sports
TV and smoking.

For the generalised linear mixed model (GLMM), we applied the Monte-Carlo-Newton-
Raphson (MCNR) algorithm (McCulloch 1997) in combination with confidence regions (Booth
& Hobert 1999). We also fitted the model with penalised quasi likelihood (PQL). For the
GLMMs, the PQL methods can perform poorly relative to maximum likelihood (McCulloch
1997). Table 3 gives quite different parameter estimates for PQL compared to the MCNR
algorithm, indicating a possible bias and yielding unreliable estimates. Since the GLMM
is a subject-specific model, we describe the parameter estimates at the subject level. For
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instance, the odds of choosing a bar that offers drink deals for a person who is working
are exp(0.544) = 1.72 (using MCNR) times those for the person who is not working. It
compares the odds of choosing a bar that offers drink deals for each person when the person’s
working status changes. In general, a random effects model with logit link does not imply a
marginal model with the logit link. The marginal model parameter estimates are based on
the population–averaged level. For the simple case with single univariate random effect, there
are approximate relationships between their parameters (Zeger et al. 1988). Agresti & Liu
(2001) gave the discussion between the marginal and random effects models when T = 1. The
same arguments also hold for the case with T > 1. Therefore, the parameter estimates are
different from those in the GEE method.

7 Discussion

This article mainly focuses on GEE and GLMM methods for modelling repeated multiple
responses due to the impractical nature of the ML approach. The ML estimation does not
need any assumption about correlation parameters, however, the method becomes infeasible
even for small c and T , because data are often highly sparse according to the 2cT possible
profiles. The mixed models take into account the dependence among items and time points
through the distribution of random effects. It has relatively few parameters compared to the
ML method which assumes the multinomial distribution for the 2cT possible profiles. However,
the mixed model as in model (7) implies the nonnegative associations across different time
points due to the simple structure of the joint distribution. This might not be the case, that
is, subjects who respond positively to one item at one time point may not be likely to respond
positively to the item at another time point. Furthermore, the mixed model that contains one
single univariate random effect (e.g., ui), implies the nonnegative association across all items
and time points.

The marginal models using GEE approach do not assume any subject–specific joint dis-
tributions. They use only a working correlation structure for the responses across items and
time points to improve efficiency. In general, the GEE method is widely implemented in all
common statistical packages. If one wishes to obtain even more efficient estimates, we rec-
ommend implementing the GEE procedure using the groupwise method that allows different
correlation parameters for different groups. Based on the simulation study, the estimators
are more efficient when the correlation structure is exchangeable. Similar results hold for
the repeated multiple response case with T > 1 (Suesse 2008). One can also consider more
sophisticated correlation, such as the autoregressive structure across different time points and
the exchangeable structure across different items when T > 1.

Although both GEE and GLMM methods seem similar and contain the same fixed effect
parameters β, one does not imply the other. For our example, we are interested in how the
probability of choosing a bar having a certain feature depends on different factors. Therefore,
the overall (population–averaged) rates are more relevant. Generally speaking, the marginal
models seem to be more useful in many applications than the subject–specific models. The
subject–specific models might be useful in medical studies, when the effects of interest are at
the subject–level. For instance, does the probability of recovery depend on the treatments
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Table 3: Parameter estimates, (s.e.), p-value for GEE and GLMM models

Drink Deals Pool Table Sports TV

method work friends sex pool sex smoke sex

GEE 0.488 0.013 -0.641 -0.843 -0.473 0.201 -0.609

unstr(items) (0.286) (0.512) (0.329) (0.498) (0.355) (0.212) (0.385)

-exch(time) 0.087 0.980 0.052 0.091 0.182 0.342 0.114

GEE (G = 2) 0.553 0.575 -0.645 -0.792 -0.460 0.381 -0.837

exch(items) (0.241) (0.295) (0.323) (0.408) (0.329) (0.188) (0.393)

-unstr(time) 0.022 0.051 0.046 0.052 0.162 0.042 0.033

GEE 0.439 0.480 -0.685 -0.519 -0.523 0.396 -0.674

exch(items) (0.215) (0.323) (0.324) (0.377) (0.335) (0.196) (0.401)

-unstr(time) 0.041 0.136 0.034 0.168 0.118 0.043 0.093

GEE 0.540 0.655 -0.766 -0.207 -0.478 0.298 -0.599

ind (0.279) (0.497) (0.269) (0.370) (0.278) (0.291) (0.340)

0.053 0.187 0.004 0.575 0.085 0.306 0.079

GEE 0.436 0.479 -0.673 -0.223 -0.498 0.262 -0.635

unstr (0.250) (0.421) (0.311) (0.336) (0.346) (0.208) (0.380)

0.081 0.255 0.030 0.507 0.149 0.206 0.095

GEE 0.556 0.528 -0.746 -0.322 -0.549 0.250 -0.706

exch (G = 2) (0.269) (0.402) (0.323) (0.364) (0.355) (0.219) (0.385)

0.039 0.189 0.021 0.375 0.122 0.252 0.067

GEE 0.541 0.528 -0.759 -0.294 -0.545 0.248 -0.692

exch (0.268) (0.407) (0.321) (0.361) (0.354) (0.220) (0.388)

0.043 0.195 0.018 0.414 0.124 0.260 0.075

GLMM 0.544 0.662 -0.775 -0.209 -0.487 0.299 -0.609

MCNR (0.280) (0.498) (0.270) (0.371) (0.278) (0.291) (0.341)

mult 0.051 0.183 0.004 0.571 0.080 0.305 0.074

GLMM 0.796 0.527 -0.996 -0.592 -0.926 0.253 -1.134

PQL (0.228) (0.409) (0.659) (0.321) (0.661) (0.227) (0.686)

uni 0.001 0.198 0.131 0.065 0.161 0.265 0.099
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and other covariates conditional on patients?

The proposed groupwise method is a form of modelling of the correlation parameters. A
common way to model a measure that describes the dependence between items, e.g. odds ratio
or correlation parameter, is to express the model as a set of GEE. In this way, we obtain a
second set of GEE, in addition to the first set of GEE that describes the mean response model.
When this second set is orthogonal to the first set, the fitting is called GEE1 (Prentice 1988)
and if both sets are fit jointly then it is called GEE2 (Zhao & Prentice 1990). The proposed
groupwise method is a simple method which only need one set of GEE, the set that specifies
the mean response model, and therefore provides an alternative to GEE1 and GEE2. For
further details of GEE1 and GEE2, see Prentice & Zhao (1991),Lipsitz, Laird & Harrington
(1991) and Liang, Zeger & Qaqish (1992).

Finally, we discuss the issue about missing data, which occur in our example. The GEE
method assumes data being missing completely at random (MCAR). However, under the
weaker assumption of missing at random (MAR), GEE does not provide consistency in contrast
to ML methods provided by Lang & Agresti (1994) and Lang (1996). On the other hand, the
procedure in GLMMs assumes MAR. For our example, the GEE method seems reasonable,
because a subcase of MCAR allows missingness to depend on the observed covariates, e.g.
time, major, or sex. It is called the covariate-dependent missingness (Hedeker & Gibbons
2006). However, for other examples, such covariate dependence can be ruled out. Fitzmaurice,
Molenberghs & Lipsitz (1995) and Ali & Talukder (2005) considered missing data mechanisms
for longitudinal binary data deriving weighted generalised estimation equations (WGEE), an
extension of GEE which can handle MAR. Future research will extend our method to the
MAR case.

A Proof of Theorem 3.1

Liang & Zeger (1986) showed the following theorem for the property of the GEE estimators:

Theorem A.1 ( “standard method”). Under mild regularity conditions and given that :

1. α̂ is n1/2 consistent given β and φ

2. φ̂ is n1/2 consistent given β,

3. |∂α̂/∂φ| is Op(1)

then n1/2(β̂ − β) is asymptotically multivariate Gaussian with zero mean and variance

lim
n→∞

n · J−1
1 J2J

−1
1

where

J1 =
n
∑

i=1

MT
i V

−1
i Mi and J2 =

n
∑

i=1

MT
i V

−1
i Cov(yi)V

−1
i Mi.
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The only difference between Theorems A.1 and 3.1 is condition (1.) and Vi. In Theorem
A.1 index i of Ri only refers to possible different cluster lengths but the correlation itself is
assumed to be equal for all observations i. In contrast, in Theorem 3.1 matrix Ri stands for
different cluster lengths but also stands for different correlations depending on which group g
observation i belongs to.

Now we want to prove Theorem 3.1, letting α = (αT
1 , . . . ,α

T
G)

T . If observation i lies in
group g, then i = 1, . . . , ng. If we do not refer to index g, then i = 1, . . . , n. We can apply
the same lines as in the proof for Theorem A.1 on page 2 in Liang & Zeger (1986). But now
we can re-write B∗ , given on page 21 in Liang & Zeger (1986), as

B∗ =
1

n

n
∑

i=1

∂Ui(β,α)/∂α =
1

n

G
∑

g=1

ng
∑

i=1

∂Ui(β,αg)/∂αg

Now B∗ = op(1), since ∂Ui/∂αg are linear functions of ri’s whose means are zero, and
conditions 1.-3. of Theorem 3.1 give

C∗ = n1/2
[

α̂{β, φ̂(β)} − α̂(β, φ) + α̂(β, φ)−α
]

= n1/2

{

∂α̂(β, φ∗)

∂φ
(φ̂− φ) + α̂(β, φ)−α

}

= n1/2
G
∑

g=1

∂α̂g(β, φ
∗)

∂φ
(φ̂− φ) + (n/ng)

1/2
G
∑

g=1

n1/2
g (α̂g(β, φ)−αg)

= Op(1)

The remaining lines are the same on page 21 in Liang & Zeger (1986).

B Questionnaire

1. “Indicate which of these Wellington bars you have been to” and which of these ticked
is your most favourite bar. Any/75 bars could be chosen plus the option “other” bar,
where the student was also asked to provide its name.

2. “What type(s) of music do you listen to when you go out to bars? (a) Alternative, (b)
Dance, (c) Hip Hop, (d) Karaoke, (e) Pop, (f) Rock, (g) 6os, (h) 7os, (i) 8os, (j) 9os,
(k) Other (please specify).”

3. “Do you prefer to dress up to go out to bars? Yes/No”

4. “Do you enjoy playing pool?: Yes/No”

5. “Do you get out to ... ? (a) Socialise with friends, (b) Meet new people, (c) Listen to
music, (d) Get drunk, (e) Other (please specify).”

6. “Do you think your choice of bar is affected by advertising? Yes/No”
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7. “How many bars would you visit on a night out? (a) 1− 2, (b) 3− 4, (c) 5− 6, (d) 7 or
more.”

8. “Is a bar’s décor usually important to you? For instance, how the place looks. Yes/No”

9. “Is a bars popularity important to you? Yes/No”

10. “How often do you go out to bars? (a) Once a day, (b) Every second day, (c) Once a
week, (d) Every second week, (e) Once a month.”

11. “Do you drink alcohol? Yes/No”

12. “Do you smoke cigarettes? Yes/No”

13. “Do you work? (a) Yes (full-time or part-time), No”

14. “How long have you lived in Wellington? (a) ≤ 5 months, (b) 6−11 months, (c) 12−17
months, (d) 18− 23 months, (e) ≥ 24 months.”

Our aim is to model how the choice of the favourite bar is affected and associated by the
bars’ features and how it depends on the responses to questions (2)-(14) but also on some
other fixed covariates such as age, sex, major, ethnicity and type of fees. Each bar’s features
were collected separately.
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