
Modelling Strategies for Repeated Multiple
Response Data

Thomas Suesse1 and Ivy Liu2

1Centre for Statistical and Survey Methodology
School of Mathematics and Applied Statistics

University of Wollongong, Australia
E-mail: tsuesse@uow.edu.au

2 School of Mathematics, Statistics and Operations Research
Victoria University of Wellington, New Zealand

Summary

This article discusses modelling strategies for repeated measurements of a multiple response

variable. This refers to a categorical variable where one can select none or more than one of

the categories. We consider each of the response categories as a binary response and model

the means using a marginal model approach. A generalised estimating equations (GEE)

method is used to account for different correlation structures, both over time and between

items. In addition, we discuss an alternative approach using a generalised linear mixed model

(GLMM) with conditional interpretations. The GLMM contrasts with the marginal model

which shows population-averaged interpretations. We illustrate these methods using The

Household, Income and Labour Dynamics in Australia (HILDA) Survey, a household-based

panel study.

Key words: Repeated Measurements, Generalised Linear Models (GLMs), Generalised Esti-

mating Equations (GEE), Generalised Linear Mixed Models (GLMMs)
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1 Introduction

Surveys often contain categorical responses where respondents may select none or more than

one responses. This occurs, for example, when respondents are asked to “tick all that apply”

for a list of the outcome categories. These are referred to as multiple response data in this

paper. As an example, consider the Household, Income and Labour Dynamics in Australia

(HILDA) Survey. It is a longitudinal survey that collects information about economic and

subjective well-being, labor market dynamics and family dynamics, beginning in 2001. For

annual expenses, respondents are asked to “tick all that apply” for various categories such

as holidays and holiday travel costs, private health insurance, other insurance (such as home

and contents and motor vehicles), etc. Following the literature, we refer to each category as

an item.

The analysis of multiple responses has been considered by various authors. Agresti & Liu

(1999, 2001) discussed different modeling strategies to describe the association between items

and explanatory variables, by treating the responses for each of the items as binary responses

(being selected or not). They modelled these correlated responses using the marginal model

approach and the mixed model approach. Loughin & Scherer (1998) developed methods to

test for the independence between each of the response items and an explanatory variable.

Bilder & Loughin (2002) considered the case where the data are stratified by a third variable,

and developed a test to detect whether the group and items are marginally independent given

the stratification variable. Bilder & Loughin (2004) developed a test for marginal indepen-

dence between two categorical variables with multiple responses. Bilder & Loughin (2007)

showed the case of modelling two or more categorical variables across all items simultaneously

using loglinear models. Liu & Suesse (2008) presented two methods for making inference for

multiple responses when the data include highly stratified variables.

However, the situations with repeated measurements or longitudinal data have not been

considered by these authors. The approach proposed by Bilder & Loughin (2007) could

be applied to repeated multiple response data, by treating the two variables as repeated

2



multiple responses, but it leaves out the distinct correlation structure over time. Another

possible approach uses hierarchical models where the responses of being selected or not for

each of the items are grouped at two different levels across items and time points. Because

the hierarchical models use various variance components to take into account the dependency

among items and time points, it does not directly incorporate correlation structures between

repeated measurements. The hierarchical model is a special case of a generalised linear mixed

model (GLMM), which will be discussed in Section 3.

Extending the modeling strategies given by Agresti & Liu (1999, 2001), this paper dis-

cusses methodologies for repeated multiple responses by considering suitable association

structures across both items and time points. These methods can be generalised to more

than two levels, as for HILDA where responses are correlated within households as well.

Section 2 shows methods based on the marginal model approach. We focus primarily

on generalised estimating equations or GEE (Liang & Zeger, 1986) and consider a variety

of possible correlation structures. Standard GEE methods allow only a few options for

the correlation structure, and these options are unlikely to be valid for repeated multiple

response data. Due to the dependency across several levels, we propose an alternative method

combining the levels in a way that allows the use of standard GEE methods while also

accounting for multiple correlated levels. Section 3 considers a mixed model approach and

reviews some popular model-fitting techniques. In Section 4, a simulation study is conducted

to investigate the performance of the proposed GEE method to account for different correlated

levels. It confirms the usefulness of the proposed method. Section 5 illustrates the methods

on the HILDA survey using waves E, F, G and H (years 2005-2008). We also use some

of the goodness-of-fit techniques for GEE methods to evaluate the choice of the correlation

structure. The paper ends with a discussion.
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2 Marginal Modelling

Agresti & Liu (2001) considered several strategies to model c items simultaneously for a

single time point. They introduced the marginal model approach that takes the dependence

between items on the same subject into account. Generalising their method, we first consider

the marginal model approach to model c items and T time points simultaneously.

Let Yijt = 1 if subject i = 1, . . . , n selects category j = 1, . . . , c at time point or occasion

t = 1, . . . , T and Yijt = 0 otherwise. Denote the mean of Yijt by πj|it, the probability of a posi-

tive response on item j at occasion t by the ith subject. The ith subject’s 2c·T response profile

for c items and T time points becomes Yi = [(Yi11, Yi21, . . . , Yic1), . . . , (Yi1T , Yi2T , . . . , YicT )]′

with the mean πi = [(π1|i1, π2|i1, . . . , πc|i1), . . . , (π1|iT , π2|iT , . . . , πc|iT )]′.

Using a logit link h(π) = logit(π) = log(π/(1− π)), a marginal model can be written as

h(πi) = Xiβ, (1)

where h(πi) = [(h(π1|i1), h(π2|i1), . . . , h(πc|i1)), . . . (h(π1|iT ), h(π2|iT ), . . . , h(πc|iT ))]′ and Xi =

[(xi11, . . . ,xic1), . . . , (xi1T , . . . ,xicT )]′ is the design matrix associated with covariate vector xijt

of the ith subject, the jth item and tth time point, and β is the vector of population-averaged

effects. They are also often referred to as fixed effects, marginal or mean model parameters,

because model (1) refers to the first moments. In general, h(·) can be any smooth link

function. Other popular choices are the log and probit link.

For repeated multiple responses, {Yijt} are correlated over items (j) as well as over the

time points (t). There are several ways of modelling the correlation across items and time. A

naive approach is to apply a generalised linear model (GLM) (McCullagh & Nelder, 1989) by

assuming independent responses, however this approach does not yield proper standard errors

for β̂. We next discuss two methods to incorporate the correlation – maximum likelihood

and GEE.

4



2.1 Maximum Likelihood method

Model (1) can be expressed as a generalised log-linear model and one can use maximum

likelihood (ML) to estimate the parameters (Lang & Agresti, 1994; Lang, 1996). Lang (2005)

proposed an extension that allows any smooth link function h(·).

The ML method treats the counts from the 2c·T response profile for each of the K covariate

settings as a multinomial distribution. In general, we can across-classify subjects according

to their response profile and covariates to create a K× 2c·T contingency table. ML estimates

are obtained by maximizing the multinomial likelihood subject to constraints satisfying the

mean model. The method requires that the contingency table has large cell counts in order to

apply the central limit theorem. When the number 2c·T or K is very large, the requirement is

not fulfilled. Continuous covariates are of particular concern, because then K often equals the

sample size. Another similar application where the sparseness of the data causes problems

for the ML method has been illustrated by Suesse & Liu (2012).

Additionally, one could also model the second order moments through the odds ratio

θi,jj′,tt′ =
Pr(Yijt = 1, Yij′t′ = 1) Pr(Yijt = 0, Yij′t′ = 0)

Pr(Yijt = 1, Yij′t′ = 0) Pr(Yijt = 0, Yij′t′ = 1)
, j 6= j′ or t 6= t′ (2)

or the correlation

Ri,jj′,tt′ =
Pr(Yijt = 1, Yij′t′ = 1)− Pr(Yijt = 1) Pr(Yij′t′ = 1)

[Pr(Yijt = 1)(1− Pr(Yijt = 1)) Pr(Yij′t′ = 1)(1− Pr(Yij′t′ = 1))]1/2
. (3)

Both approaches lead to a more complicated ML, because it requires fitting the mean and

association models jointly. Fitzmaurice & Laird (1993) proposed using the conditional odds

ratio to model the association, leading to a complicated ML approach that utilises the iter-

ative proportional fitting algorithm.

Another measure of association is the dependence ratio (Ekholm et al., 1995, 2003). In

contrast to the correlation and the odds ratio, the dependence ratio is a linear function of

the K×2c·T multinomial probabilities, reducing the complexity of the ML method. However
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it does not eliminate the problems associated with the large cell count requirement. The

R-package (R-Development-Core-Team, 2006) drm (Jokinen, 2009) can be used to fit such

models. The dependence ratio was also criticised by Molenberghs & Verbeke (2004), who

argued instead for the odds ratio as a measure of association, due to symmetry and ease of

interpretation.

2.2 Generalised Estimating Equations

Besides the ML method, the GEE method (Liang & Zeger, 1986) is another popular

fitting procedure and is an extension of the quasi-likelihood method (Wedderburn, 1974)

for multivariate data. The GEE method fits the marginal model (1) simultaneously across

items and time points, while it also incorporates a chosen correlation structure, known as the

working correlation. Let the working correlation structure be Ri(α), a cT × cT correlation

matrix for subject i (i = 1, . . . , n) depending on correlation parameter(s) α. The GEE

estimates are obtained by computing the root of the generalised estimation equations

n∑
i=1

M′
iV
−1
i ri(β) = 0, (4)

where Mi = ∂πi/∂β, Vi = AiRi(α)Ai, ri(β) = Yi−πi(β) and matrix Ai = Diag(
√

Var(Yi))

with Var(Yi) = πi(1 − πi), because we are dealing with binary observations. Preisser

& Qaqish (1996) suggested the iterated weighted least squares method to obtain β̂. The

(co)variance estimator for β̂ is (
∑n

i=1 M̂′
iV̂
−1
i M̂i)

−1, called the naive (co)variance. One can

adjust the standard errors for β̂ to reflect what actually occurs for the sample data by using

the ‘sandwich’ estimator, also known as the robust variance (Liang & Zeger, 1986). If the

working correlation is the true correlation, then the naive variance is consistent and equals

the robust variance; however if this does not hold, then only the robust variance is consis-

tent. Note that the robustness of the robust variance only applies to a mis-specification of
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the association model, but not to mis-specification of the clusters. For example, for repeated

multiple responses, if a cluster is wrongly specified as a sequence of less than c · T binary

responses, then the robust variance is not consistent.

Choosing a suitable correlation model/structure, one that is close to the true model,

is essential in obtaining more efficient parameter estimates for β (Liang & Zeger, 1986).

Considering that items are often either very similar or different, suitable correlation structures

between items j1 and j2 include ‘independence’ (Rj1j2 = 0), ‘exchangeable’ (Rj1j2 = α),

and ‘unstructured’ (Rj1j2 = αj1,j2), see Agresti & Liu (1999, 2001). For longitudinal data,

‘autoregressive’ (AR) (Rt1t2 = α|t1−t2|) is the common one, because observations further apart

in time are generally less correlated than those closer in time. The autoregressive structure

can be generalised into the m-dependence structure, where the responses are not correlated

if the time lag exceeds m units.

2.3 Alternating Logistic Regression and Method of Orthogonalised Residuals

Alternatively, rather than using the correlation as the association, one can use the pairwise

odds ratio θi,jj′,tt′ instead, see (2). A typical association model has the form

g(θi,jj′,tt′) = Zi,jj′,tt′α (5)

where g(·) is a link function, α is a vector of model parameters and Zi,jj′,tt′ is a row vector

of predictors. Fitting (1) and (5) jointly was suggested by Lipsitz et al. (1991) using the

standard GEE method for both β and α. For a popular choice of h(·) = logit(·) and

g(·) = log(·), Carey et al. (1993) proposed the alternating logistic regression (ALR) method,

where two estimating equations of similar form as those for logistic regression are iterated in

an alternating pattern. However, these two estimating equations of ALR are not orthogonal,

meaning that mis-specification of the association model leads possibly to inconsistent β̂. To

overcome this limitation, Zink (2003) extended ALR by adding an additional parameter that
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makes residuals and responses asymptotically orthogonal. This method is implemented in

the R-package orth (By et al., 2011) with ALR as a special case.

Similar to the correlation structure, the options ’exchangeable’ and ’unstructured’ are

available for the pairwise odds ratios by specifying the design matrix Zi,jj′,tt′ . As an ana-

logue to the autoregressive correlation structure, Molenberghs & Verbeke (2005) suggested

the model log(θi,jj,t1t2) = 1
|t2−t1|α or equivalently θi,jj,t1t2 = exp(α)

1
|t2−t1| . The θ value indi-

cates the direction of association between responses, where ‘1’ indicates independence, ‘< 1’

indicates a negative association, and ‘> 1’ corresponds to a positive association. The function

exp(α)
1

|t2−t1| guarantees that the association diminishes (approaches 1) as |t2 − t1| increases.

2.4 Combining Levels for Repeated Multiple Response Data

Repeated multiple responses are characterised by both items and time points For a common

time point, the chosen association model between responses should match the structure for

standard multiple responses. Similarly, for a common item, the association model used across

two time points should be one for longitudinal data. The question of how to combine the

two levels effectively is considered next.

2.4.1 Combining Levels for GEE

Let Rj1j2,t1t2 denote the correlation for two responses Yij1t1 and Yij2t2 . When either j1 = j2 or

t1 = t2, the correlation should match the marginal correlation structure, that is, Rj1j2,t1t1 =

Rj1j2 or Rj1j1,t1t2 = Rt1t2 . The Rj1j2 ∈ (−1, 1) stands for the correlation between two items

with common time point, and the Rt1t2 stands for the correlation between two time points

within the same item, which is usually non-negative. In general, we let the correlation

between two time points t1 and t2 vary for different items j. The underlying assumption is

that the correlation between items does not change over time (which is reasonable for a small

number of time points but might need to be adapted for many time points) and that the

correlation over time might differ for different items. When j1 6= j2 and t1 6= t2, we suggest
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two options

Rj1j2,t1t2 =


√
Rj1j1t1t2, ×

√
Rj2j2,t1t2 ×Rj1j2 Option 1

0 Option 2
(6)

If Rt1t2 := Rj1j1,t1t2 = Rj2j2,t1t2 for any two items j1 and j2, then Option 1 becomes Rj1j2,t1t2 =

Rj1j2 ×Rt1t2 .

The motivation for using the ‘product’ in Option 1 is based on the following desirable

properties: i) Rj1j2,t1t2 = Rj1j2,t1+k,t2+k, if Rjj,t1t2 = Rjj,t1+k,t2+k; ii) Rj1j2,t1t2 diminishes if

|t2 − t1| increases, provided the same applies to Rj1j1,t1t2 and Rj2j2,t1t2 ; iii)Rj1j2,t1t2 ≤ 0 iff

Rj1j2 ≤ 0 assumingRjj,t1,t2 ≥ 0, and iv)Rj1j2,t1t2 ≤min(
√
Rj1j1,t1t2 ×Rj2j2,t1t2 , Rj1,j2). Option

2 refers to independence across different items over different time points.

Unfortunately, when the AR structure is used for the time dependence in model (6), we

cannot apply standard statistical packages, such as gee and geepack in R, to fit the proposed

models. Besides, because AR is a non-linear correlation model, we cannot specify a design

matrix for a linear correlation model using the package geepack. To solve the complication,

we propose another feasible option using existing software packages to incorporate model (6).

In step 1, we fit the mean model by choosing the AR structure for the time dependence

and ignore item dependence. In Step 2, we fit the same mean model again but this time use

an appropriate structure for the items and ignore time dependence.

The mean model parameters β are estimated consistently provided the mean model is

correctly specified, irrespective of the association model. The corresponding correlation pa-

rameters α in Step 1 and 2 are estimated also consistently, provided those models for items

and time points are correct, but irrespectively of the correlation model for those items for

which j1 6= j2 and t1 6= t2. This is case, because the two sets of residuals used in Step 1 and 2,

over which the correlation model parameters are estimated, are distinct sets. This applies for

the standard GEE method only (sometimes called GEE1), for which the estimating equations

for β and α are orthogonal but not for GEE2 (Liang et al., 1992).

In step 3, we use the estimates from step 1 and 2 to compute the fixed working corre-
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lation Ri following Options 1 or 2 in (6), and re-fit the mean model again with the ‘fixed’

working correlation structure Ri. The option ‘fixed’ is standard for most GEE packages. To

investigate the performance of this 3-step method, a simulation study is conducted in Section

4.

2.4.2 Combining Levels for ALR

We propose the following odds ratio model for repeated multiple response data:

θj1,j2,t1,t2 =

 exp(αj1,j2)
1

|t2−t1|+1 for j1 6= j2 (different items)

exp(αj1)
1

|t2−t1| for t1 6= t2 and j1 = j2 (equal items)
(7)

This model has similar properties as the proposed correlation model, see (6), and it extends

the idea behind the model suggested by Molenberghs & Verbeke (2005) for longitudinal data.

Notice that, the exponent for j1 6= j2 is |t2 − t1|+ 1 instead of |t2 − t1| to allow t1 = t2.

2.5 Model Diagnostics

GEE requires to specify a mean model, such as equation (1), and a model for the associ-

ation. Since GEE is not a likelihood based fitting approach, likelihood-based inference is

not possible. There is a vast literature on model diagnostics for GEE, including ALR as a

sub-case. For example, when the focus is primarily on efficiency of β̂, Pan & Connett (2002)

considered several methods for choosing a working correlation subject to minimizing the

predictive mean squared error. Other examples include diagnostics to check the association

model (Rotnitzky & Jewell, 1990; Hin et al., 2007) and the overall goodness-of-fit (Barnhart

& Williamson, 1998; Horton et al., 1999; Pan, 2001) following the principle of the famous

Hosmer and Lemeshow statistic. Some of these diagnostics are illustrated in Section 5 for

the HILDA data set.
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3 Generalised Linear Mixed Models

The marginal model (1) is called a population-averaged model, which focuses on the marginal

distribution of the responses. Instead of assuming a particular joint distribution of responses,

the GEE method specifies only the first two moments. The mean is linked to the predictor

and the working correlation is incorporated to obtain the estimators. In contrast, generalised

linear mixed models (GLMMs) include random or subject-specific effects in the mean model,

additional to the fixed effects. This model is referred to as a subject-specific model, since

parameters are interpreted on the subject level.

Let ui be the random effect vector for subject i and let Zi be the design matrix for the

random effects. Define π̃i = E(Yi|ui). Given the random effects ui for cluster i, the GLMM

has a similar form as a GLM

h(π̃i) = Xiβ
sub + Ziui, (8)

where the design matrix Zi consists of rows z′ijt referring to subject i, item j and time point

t. The vector of fixed effects of the subject-specific model is βsub to distinguish it from β of

the marginal model.

It is commonly assumed that the random effects ui of dimension r (r ≤ c × T ) follow a

multivariate normal distribution with mean 0 and unknown covariance matrix Σ. Maximising

the marginal likelihood that integrates out the random effects results in ML estimates for

βsub and Σ (Agresti, 2002). The integral usually cannot be solved analytically and numerical

methods (such as Gauss-Hermite quadrature) must be applied. They work well for small

r, but become infeasible for a large r, because the number of quadrature points used to

approximate the integral increases exponentially with r.

Several methods for approximating the marginal likelihood are available (Stiratelli et al.,

1984; Schall, 1991; Breslow & Clayton, 1993; Zeger et al., 1988; Goldstein, 1991; Raudenbush

et al., 2000). However, most of them can yield poor estimates, in particular for first order

expansions (Breslow & Lin, 1995). Other possible approaches include penalised log-likelihood
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equations (Schall, 1991; Breslow & Clayton, 1993), Bayesian mixed models (Fahrmeir & Tutz,

2001) and semi- or non-parametric ML (Hartzel et al., 2001). Another popular method is

the EM (expectation-maximisation) algorithm by treating the random effects as unobserved

data. Algorithms have been provided by McCulloch (1997) and Booth & Hobert (1999)

among others.

A special case of GLMMs includes a typical multilevel approach that considers subjects,

time and items as levels (Goldstein, 1991; Guo & Zhao, 2000), i.e. uj ∼ N(0, σ2
j,item) (item

effects), ut ∼ N(0, σ2
t,time) (time effects) and ui ∼ N(0, σ2

cluster) (cluster effects). This ap-

proach does not resemble a typical time dependence structure, such as the autoregressive

structure. A simple case of such a multi-level model uses random intercepts only, implying

non-negative correlations between the responses. Only if z′ijtui and z′ij′t′ui are monotone in

opposite directions, the covariance is non-positive (Egozcue et al., 2009). That is, negative

correlations cannot be modelled by random intercepts or positive design matrices. In our

view, constructing negative correlations by specifying zijt seems impractical and therefore a

GLMM is not useful in modelling data with negative correlations. This is supported by the

simulation study in the next section, where under a marginal model with negative correlation

the type I error rates exceed 5% when a GLMM was fitted.

There are often exact or approximate relationships between β and βsub, depending on

h(·) (Zeger et al., 1988). For example for the logit link

x′ijtβ ≈ a(Σ)x′ijtβ
sub, (9)

where a(Σ) is a constant depending on the random effects variance and on z′ijt . It illustrates

that a mixed model and a marginal model are different. Detailed arguments for the choice

between marginal and subject-specific models are available in Agresti (2002) and Neuhaus

(1992). Often and particularly in surveys, where interpretation is sought for the whole

population, marginal models are more relevant.
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4 Simulation Study for GEE Approach Combining Levels

To investigate the performance of our proposed 3-step method, we consider c = 3 and T = 3

in a simulation study. This choice of c and T is reasonable to illustrate the working correlation

‘unstructured’ for the items and the AR-structure over the time points.

Marginal Mean Models

We consider two marginal mean models. Model A has the form

logit(πj|it) = β0j + β1jX

with β01 = 0.0, β02 = 0.5,β03 = 0.9, β11 = 0.0, β12 = 0.5, β13 = 1.0 and X ∼ N(0, 1). The

intercept β01 and slope β11 for the first item are both set to zero in order to investigate the

type I error rates.

Model B has the form

logit(πj|it) = β0 + β1X,

where β0 = −1 and β1 = 3 with X ∼ N(0, 1), with no item or time effects. The number of

clusters (or subjects) generated for each model is n = 30, 100, 500.

Association Models

We consider three association models. For simplicity we assume for the first two models a

common AR structure Rjj,t1t2 = Rt1t2 = 0.3|t2−t1| and specify the between item correlation

(Rj1j2) as R1,2 = 0.2, R1,3 = 0.1 and R2,3 = 0.3. Model I reflects Option 1 in (6). Option 2 was

also included in simulation study but results are not shown. Model II refers to Rj1j2,t1t2 = 0.05

for j1 6= j2 and t1 6= t2. Model III uses the odds ratio association in (7) with θ1,2,t1,t2 =

0.3
1

|t2−t1|+1 , θ1,3,t1,t2 = 0.4
1

|t2−t1|+1 , θ2,3,t1,t2 = 0.5
1

|t2−t1|+1 , and θj,j,t1,t2 = 5
1

|t2−t1| . Notice that

model III imposes negative correlations between the 3 items, because θ < 1.
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Data Generation from Multivariate Binary

To simulate the data, we need to calculate the joint distribution for each Yi specified by 2c·T

probabilities, for the given marginal means πj|it and correlations. Note that when Model III

is used, the correlations can be computed from the marginal probabilities and the odds ratio

association. From the correlations and πj|it, the pair-wise probabilities Pr(Yijt = 1, Yij′t′ = 1)

are computed. Finally a joint distribution can be found, subject to Pr(Yijt = 1, Yij′t′ = 1)

and πj|it (Lee, 1993). There are usually many solutions, provided a feasible solution exists.

The iterative proportional fitting algorithm (IPF) of Gange (1995) is applied to obtain such

a solution, which is analogous to the simulation study in Bilder et al. (2000).

Mixed Models

We also generate data from two mixed models, denoted by model A∗ and B∗ with the same

fixed effect parameters as for models A and B. Let the item random effects be uitemij ∼

N(0, 0.5), time random effects be utime
it ∼ N(0, 1) and the cluster random effects be uclusteri ∼

N(0, 0.3) for j = 1, 2, 3, t = 1, 2, 3 and i = 1, . . . , n. All random effects are assumed as

independent.

The fixed effects of a GLMM and of a marginal model have different meanings and

estimates are of different magnitude. From the approximate relationship (9) follows that

approximately β̂ = 0 iff β̂
sub

= 0. Therefore testing for significance of a covariate can be

achieved via the GLMM approach or the marginal model approach. To assess the type I

errors under either model approach, we included both approaches into the simulation study.

Fitting Methods

Under the marginal models A and B and the mixed model A∗ and B∗, we fit the marginal

model with several choices of the association model, see a) - k) below, and also fit a mixed

model, see l). In both cases, we correctly specify the (conditional) mean model. The fitting

methods considered are:
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a) unstructured for whole cluster (unstr)

b) exchangeable for whole cluster (exch)

c) independence for whole cluster (ind)

d) only item correlation, ignore time points (item)

e) only time correlation, ignore items (time).

f ) Option 1 specified by (6), mean model and working correlation estimated jointly (opt1-

j)

g) Option 1, item and time correlation estimated separately, i.e. 3-step method applied

(opt1-s)

h) same as f), but Option 2 (opt2-j)

i) same as g), but Option 2 (opt2-s)

j ) ALR specified by (7) denoted by (alr1)

k) same as j) except θj1,j2,t1,t2 = 1 for j1 6= j2 and t1 6= t2 (alr2)

l) mixed model with item, time and subject random effects (glmm)

Results of the simulation study are shown in Tables 2, 3, 4, 5 and 6. For n = 30 and

n = 100, we simulated 10, 000 data sets, and for n = 500, we simulated only 5, 000 data sets.

The effect of mis-specification of the association model on the estimation of the fixed effects

can be assessed.

Tables 2 (for Model A) and 3 (for Model B) show the relative mean squared error (RMSE),

which is the mean squared error relative to the method using the correct known (fixed)

correlation structure to evaluate the relative efficiency. The tables also give the coverage for

a 95% confidence interval based on the naive variance and on the robust variance (denoted

by “naive” and “robust”). The information on the bias of standard errors can be followed,
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because under-coverage indicates that standard errors are under-estimated and vice versa.

Models A and B contain several parameters. Because results are similar for all parameters

and to summarise the results more effectively, the tables show only a single value for each

model. The single value shows the average of RMSEs (or coverages) over all fixed effects.

Table 4 and Table 5 respectively show the type I error for β01 and β11 in models A and

A∗. The type I error is computed as the proportion of times that the null hypothesis (such

as β01 = 0) was rejected based on the Wald test at the 5% significance level. We can assess

whether GEE and GLMMs are robust under mis-specification by assessing the type I error.

Models I and II, as well as the GLMM, refer to positive correlations between items, whereas

model III refers to negative. Table 6 shows the mean squared error (MSE), “naive”, and

“robust” for each of the two parameters in model B. It allows us to compare the results of

each parameter with the average ones in Tables 2 and 3.

Before we draw conclusions from the tables, there are two notices. Firstly, these tables

do not show the confidence interval (CI) length and the bias. The bias is negligible. The CI

length is monotone in the coverage, because the CI is centered around the same β̂ due to the

consistency of β̂. Therefore, in general, a method with a smaller coverage has a shorter CI.

Secondly, all methods a) - k) were applied to the whole cluster of size c · T except methods

d) and e). Methods d) and e) were only applied to the clusters that defined items and

time points, respectively. Therefore these methods wrongly identify the clusters. The robust

variance is not consistent for methods ‘item’ and ‘time’ due to cluster mis-specification.

Figures 1, 2 and 3 present the results graphically. For better scaling in Figure 1 the

RMSE is the MSE relative to the best method.

In summary of Tables 2, 3, and 6, the larger the number of clusters becomes, the more

accurate the robust variance due its consistency, except for methods ‘time’ and ‘item’. The

naive variance seems rather unreliable. The method ‘unstr’ usually performs poorly for

a small n in terms of both relative efficiency and non-convergence, but improves when n

increases. Methods ‘opt2-j’ and ‘opt2-s’, which assume zero correlation between responses of
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the same person for different items and different time-points, are worse than methods ‘opt1-j’

and ‘opt1-s’. Method ‘opt1-j’ seems generally best, but it requires users to write their own

code to implement the method. The suggested and relatively easily implementable method

‘opt1-s’, as an alternative to method ‘opt1-j’, performs almost as well. We would expect a

higher gain in efficiency if the correlation parameters and the fixed effects parameters are

all estimated jointly, but surprisingly the gain in relative efficiency of ‘opt1-j’ compared to

‘opt1-s’ is almost negligible. Unexpectedly, method ‘opt1-s’ also preforms well under model

III (odds ratio association models), which is probably due to a high non-convergence rate

and some undesirable properties of ALR (Zink, 2003).

The Tables 4 and 5 show that GLMMs fail in maintaining the significance level under

the marginal model. It is the worst for the association model III, which imposes negative

correlations between item. It is not surprising, because GLMM fitting method do only

provide a model based (naive) variance, but not a robust variance, as GEE (Zeger et al.,

1988). GLMMs also impose a non-negative correlations between items, explaining its poor

performance under model III. The tables also show that for a large n, GEE with the robust

variance (except method ‘item’) can maintain the significance level even under the mixed

model.

5 Example: The Household, Income and Labour Dynamics in Aus-

tralia (HILDA) Survey

The data used in this article come from waves E, F, G and H (years 2005-2008) of the

Household, Income and Labour Dynamics in Australia (HILDA) Survey. In the first wave

(wave A, 2001) 13, 969 persons 15 years or older were successfully interviewed. Subsequent

interviews for later waves were conducted about one year apart. The HILDA survey contains

information on economic and subjective well-being, labour market dynamics and family dy-

namics collected through personal interviews and self-completion questionnaires. Details are
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Figure 1: Averaged relative mean squared error of the GEE methods for mean models A and
B with association models I and III
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Figure 2: Averaged coverage of the GEE methods based on robust variance for mean models
A and B with association models I and III
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Figure 3: Type I error of the GEE methods and the GLMM method for the slope β11 for
model A with association models I, II and III, and model A∗
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documented in Wooden et al. (2002).

In the self-completion questionnaire, respondents were asked about their daily, weekly,

monthly and annual expenses. This paper focuses on three of the items for annual expenses:

i) fees paid to doctors, dentists, opticians, physiotherapists, chiropractors and any other

health practitioner (FD) (often referred to as ‘extras’), ii) private health insurance (PHI),

and iii) holidays and holiday travel costs (HOL).

In Australia, the government provides a compulsory basic health cover for everyone,

called “Medicare”, and purchasing a private health insurance as a top-up cover is optional.

Therefore respondents might tick none, any one or two or all three of these three items. Item

FD and HOL are available from wave E (2005) and the FD from wave F (2006). Therefore,

we have 4 years data for two items and 3 years data for the first item. One of the research

question governments and private health insurers might be interested in is how these three

items relate to various covariates, such as sex, drinking, smoking, the long term health

conditions, etc.

HILDA provides a number of health variables: i) alcohol drinking status (abstainer, ex-

drinker, low risk, risky, high risk), ii) health scores (0-100) for mental health, general health,

physical functioning and vitality from the SF-36 (Ware et al., 2000), iii) long term health

conditions indicator (yes/no), developed at previous wave is denoted by ‘developed T-1’, at

current wave denoted by ‘developed T’, iv) long term health conditions (e.g. speech/ hear-

ing/ learning problems, limited use of feet/arms, shortness of breath, pain, mental health,

etc.), v) smoking status (do not smoke, no longer smoke, smoke weekly but less often than

daily, less often than weekly), vi) number of cigarettes a week, and vii) satisfaction scores

(0-100) for life and with partner. The analysis accounted also for sex, age, labor force sta-

tus, race, dependent person (young adult living with parents), household size (1,2,3,4,5,6+),

number of children (0,1,2,3+) and education (higher education – masters or doctorate, grad

diploma, grad certificate, Bachelor or honours Advanced diploma, diploma, some education

– Cert I,II,III or IV, Cert not defined, Year 12, and no education), major statistical region
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(Sydney, Balance of New South Wales, Melbourne, Balance of Victoria, Brisbane, Balance

of Queensland, Adelaide, Balance of SA, Perth, Balance of Western Australia, Tasmania,

Northern Territory and Australian Capital Territory) and remoteness area (Major City, Inner

Regional Australia, Outer Regional Australia, Remote Australia, Very Remote Australia).

For this example, we consider additionally the household level. The notation πj|ith is the

probability that item j was ticked at time t by subject i who was in household h. We need to

use model diagnostics for GEE to select the best model. We first select the marginal model

logit(πj|ith) = x′ijthβj

by eliminating unnecessary covariates. Pan (2001) suggested a quasi-likelihood under the

independence model criterion (QIC) for the GEE method. Because the standard AIC for

GLMs is an approximation for QIC, we use AIC under the standard independence model

assuming common fixed effects across all waves. The final mean model consists of p = 156

chosen covariates, 51 for FD, 47 for PHI and 58 for HOL.

Next, we need to assess the association model. As Pan (2001) noted, the above approxi-

mation of the QIC can only be used to check the mean model, not the working correlation.

We also believe that the QIC is only useful for checking the mean model when the indepen-

dence correlation is used and not for any other working correlation. Alternatively one might

opt for the RJ (Rotnitzky & Jewell, 1990) criterion, where the working correlation with the

smallest RJ should be chosen. Although Hin et al. (2007) noted that neither QIC nor the RJ

criterion performed well in their simulation study for small datasets (n = 100 with cluster

size 5), we expect the RJ criterion to perform well for large n, as for the HILDA survey.

GEE with the unstructured working correlation could not be fitted due to the large data

set. We used the working correlation referring to Option 1 from (6), denoted by ‘opt1’

(Rt1t2 = Rjj,t1t2 = Rj′j′,t1t2 for j 6= j′) and ‘opt1∗’ (Rjj,t1t2 6= Rj′j′,t1t2 for j 6= j′). Because

the responses are correlated among three levels: items, time and household, Option 1 is

extended by combining three levels, not only items and time. We also fitted the mean model
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with various working correlations: independence (ind), exchangeable (ex), only accounting

for time dependence (time), for items dependence (item) and for households dependence

(HH). For ALR, we only show the results of models with time dependence (timeALR) and

with time and household dependence (timeHH), because many options including (7) did not

converge. Table 1 shows the results of the RJ criterion. According to the table, the best

choice for GEE is ‘opt1∗’ followed by ‘time’ and ‘opt1’ , but both ALR options also fit well.

Table 1: Assessing Working Correlation/Odds Ratio Models for HILDA

Working Correlation Working Odds Ratio
Measure opt1 opt1∗ ind ex time item HH time-ALR timeHH

RJ 860 822 1822 1583 845 1907 1399 890 837

For ‘opt1∗’, the AR parameters for the three items are 0.45 for FD, 0.90 for PHI and 0.54

for HOL. The correlation, between FD and PHI is −0.26, between FD and HOL is 0.21 and

between PHI and HOL it is −0.16. The correlation between members of the same household

is 0.53 for which items and time points are the same. For ‘opt1’ the single AR parameter is

0.70.

The HILDA data set also contains area information. We did not account for the depen-

dence between people from the same area in the correlation model. However, in the mean

model we added a main effect for each of the major statistical regions and remoteness areas

of Australia.

Finally to check the overall model fit for GEE with ‘opt1∗’, we constructed goodness-of-fit

(GOF) tests proposed by Horton et al. (1999) and Barnhart & Williamson (1998), extensions

of the famous Hosmer & Lemeshow (1980) statistic. They used the idea of forming G groups

by partitioning the space of covariates. With 10 groups, the test gave a p-value of 0.31.

Thus, the final GEE model was accepted, even though one must keep in mind that such tests

usually have a low power.

For fitting mixed models, the R-package lme4 (Bates & Maechler, 2010) was applied which

uses a Gauss-Hermite quadrature approximation of the marginal likelihood. We consider the
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following mixed model

logit(πj|ith) = x′ijthβ
sub
j + uh + uj|i + uj|h + uti + uth, (10)

assuming that these random effects are independent of each other. Instead of just accounting

for a single random intercept effect, e.g. ui, this model accounts for several effects, individual

level random effects uj|i (subject-item) and uti (subject-time), and household level random

effects uh (household - intercept), uj|h (household-item) and uth (household-time). These

models give more insight into the dependence of items across time-points and household

members.

The fitting results for GEE (‘opt1∗’), ALR and GLMM are presented in Tables 7, 8 and 9.

To preserve space estimates for major statistical region and remoteness area are not shown.

All other variables not shown were excluded by the model selection procedure. The analysis

of GEE shows that compared to males, females are more likely to pay fees for doctors and

extras than to pay for health insurance. This also happens for the mid-age group (35-74)

compared to the baseline age group (18-24). Those with alcohol drinking status low risk,

risky or high risk (say drinkers) are more likely to pay fees for doctors and extras than to

purchase private health insurance compared to abstainers.

There could be many reasons to explain these results, but our primary focus of this paper

is not on interpretation of such parameters. We emphasize on the statistical modeling and

its influence on the associated p-values.

Parameter estimates for GEE, ALR and GLM are not very different, but standard errors

and p-values are. GLMM shows a different picture. Fixed effects estimates are usually larger

in magnitude, as are standard errors, but p-values are generally similar to those of GEE.

This can be explained by (9). The variance estimates of the random effects for uh, uj|i, uj|h,

uti, uth are σ̂2
h = 6.34, σ̂2

j|i = 3.10, σ̂2
j|h = 8.86, σ̂2

t|i = 0.273 and σ̂2
t|h = 1.385. This gives

a(Σ̂) ≈ 0.28, implying that β̂
sub

is approximately four times larger than β̂.

In our example the item correlation estimated by GEE is −0.26 (between items 1 and 2),
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0.213 (1 and 3) and −0.16 (2 and 3) indicating a mix of negative and positive correlations.

However, GLMM (10) assumes non-negative correlations (see Section 3). To impose positive

correlations between all items, we applied a trick by transforming the 0/1 binary response to

a 1/0 response for item 2. That is, positive responses become negative and negative responses

become positive. Note this transformation changes the sign of the estimates for item 2. To

make them comparable with the GEE method, the estimates were multiplied by −1. The

trick works for data with these 3 items, but generally it might not work for c ≥ 2. For

example if the correlation between the items 2 and 3 would be positive instead, we could not

apply this trick.

6 Discussion

This article focuses on the marginal and subject-specific approaches for modelling repeated

multiple responses. For the marginal model approach, our main attention was directed

towards quasi-likelihood methods, such as GEE and ALR, because of the impractical nature

of the marginal ML approach. Using Lang’s method, the ML estimation does not require

any assumption about correlation parameters. However, this method and any other method

are often infeasible due to a large value of 2cT and the associated sparseness of the data. For

the subject-specific approach, a GLMM takes the dependence among items and time points

through the distribution of random effects into account. However it implies non-negative

associations across different items due to the simple structure of the joint distribution. The

simulation study showed this might result in not maintaining the type I error and therefore

might lead to false statistical inference.

In general, the GEE method is widely available in all common statistical packages. Choos-

ing a working correlation structure closer to the true situation can result in more efficient

estimates. This paper recommends using the correlation models (6) to account for the two

types of correlation, the item correlation and time-points correlation.
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Standard GEE packages (eg. geepack) cannot fit correlation models as (6) directly. As

an alternative, we proposed a 3-step method using existing GEE packages. The simulation

study showed that this method works almost as well as estimating the correlation and mean

model parameters jointly, and even performs well under other association models. The 3-step

method is a trick that enables us to use existing software and avoids writing new code.

Common working correlations of the GEE method assume an equal correlation between

responses Yijt and Yij′t for all subjects i. A possible extension is the group-wise method

suggested by Suesse (2008), which assumes responses are equally correlated within the same

group, but the strength of the correlation differs between groups. Grouping could naturally

occur through variables such as gender. Modelling the correlation has been proposed by many

authors; see Zhao & Prentice (1990); Liang et al. (1992); Yan & Fine (2004). This group-

wise method is a special case of these approaches and leads often to more efficient estimates,

provided that group-sizes are large and the number of parameters of the correlation model is

relatively small. We want to make the reader aware that modelling the correlations depending

on some covariates might better reflect the nature of the data and might be more important

than the choice of standard correlation structures, which assume equal correlations for all

subjects.

Although both GEE and GLMM methods seem similar and both contain fixed effect

parameters, namely β and βsub, one does not imply the other. For our example, we are

interested in how the probability of paying fees to doctors and extras (FD), paying private

health insurance (PHI), and paying for holidays (HOL) depends on different factors. For

instance, a factor of interest for a general population might be gender. Comparing females

with males does not only refer to the household but to the general population. Therefore we

are interested in a population-averaged effect and the marginal model is appropriate. The

practitioner needs to be aware of the research question at hand to decide which approach

should be applied. Generally speaking, the marginal models seem to be more useful than the

subject–specific models in many applications. For discussions on the application of either
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population-averaged or subject-specific models, see Neuhaus (1992) and Heagerty & Zeger

(2000).

Other model approaches not considered here are marginalised GLMMs, transition models

and log-linear models; for a good summary see Diggle et al. (2002). A marginalised GLMM

has the advantage of a marginal interpretation, like GEE, and allows likelihood-based infer-

ence. This approach is useful if, for example, a multi-level model is applied and a marginal

interpretation is sought. Transitional models do not only assume that the linear predictor

of Yijt depends on a set of covariates but also on previous observations, e.g. on Yij,t−1. This

approach seems more useful than the GLMM approach when the main goal is prediction of

future observations. To apply this approach for repeated multiple response data , one could

assume that the linear predictor of Yi,j1,t depends also on Yi,j2,t with j1 6= j2. Log-linear

models seem least useful for such complex data, because marginalization and the ML fitting

become increasingly complex for large c·T , as discussed in Section 2. Because most statistical

packages do not offer to fit such models, it not as straightforward as for GEE or GLMM to

apply such models.

Finally, we discuss the issue about missing data. The GEE method assumes data being

missing completely at random (MCAR). Under the weaker assumption of data missing at

random (MAR), GEE does not provide consistency in contrast to ML methods, such as

GLMM. For our example, the standard GEE method seems reasonable, because a sub-case

of MCAR allows missingness to depend on the observed covariates, e.g. time, age or sex.

It is called the covariate-dependent missingness (Hedeker & Gibbons, 2006). If, however,

missingness indeed depends on previous or current responses, then the general MAR case

applies. GEE appproaches that try to account for MAR have been considered by Fitzmaurice

et al. (1995), Ali & Talukder (2005) and Lipsitz et al. (2009).

Future research will investigate the impact of different functions on the correlations be-

tween responses across items and time points. Option 1 (6) suggests using a product, but

other functions might be more appropriate. Also, an R-package might be developed for the
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3-step method, generalising the method to more than two levels.
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Table 2: Simulation Results for model A for n = 30, 100, 500 - average RMSE, and average
coverage of 95% confidence interval based on naive variance followed by robust variance,
average is over all mean model parameters

Fitting Correlation Model
n Method Model I Model II Model III

30 unstr 1.165, 89.8, 88.5∗ 1.158, 89.9, 88.7∗ 1.151, 90.2, 88.8∗

30 exch 1.020, 93.6, 93.4 1.014, 93.3, 93.4 1.014, 87.7, 93.5
30 ind 1.020, 90.8, 93.3 1.016, 90.2, 93.4 1.015, 88.8, 93.6
30 item 1.020, 90.8, 90.1 1.016, 90.1, 89.5 1.011, 88.7, 88.1
30 time 1.006, 95.0, 93.4 1.006, 95.0, 93.4 1.007, 95.1, 93.6
30 opt1-j 1.002, 95.4, 93.4∗ 1.001, 95.1, 93.5∗ 0.997, 95.0, 93.6∗

30 opt1-s 1.006, 95.0, 93.3 1.006, 94.9, 93.4 1.003, 95.0, 93.6
30 opt2-j 1.013, 93.1, 93.4∗ 1.011, 93.7, 93.5∗ 1.026, 94.1, 93.5◦

30 opt2-s 1.017, 94.9, 93.4∗ 1.017, 94.8, 93.4∗ 1.164, 93.8, 93.7∗

30 alr1 1.026, 94.7, 93.1∗ 1.024, 94.5, 93.1∗ 1.017, 94.3, 93.0∗

30 alr2 1.017, 94.2, 93.0◦ 1.010, 93.8, 93.1◦ 1.010, 92.7, 92.7•

100 unstr 1.056, 93.8, 93.5∗ 1.058, 93.7, 93.4 1.055, 93.6, 93.3∗

100 exch 1.021, 93.4, 94.6 1.014, 93.2, 94.7 1.015, 87.2, 94.6
100 ind 1.020, 90.3, 94.6 1.013, 89.8, 94.6 1.016, 88.1, 94.6
100 item 1.020, 90.3, 90.1 1.013, 89.7, 89.5 1.013, 88.1, 87.9
100 time 1.004, 95.1, 94.6 1.003, 95.0, 94.7 1.009, 94.9, 94.6
100 opt1-j 1.003, 95.4, 94.6∗ 1.004, 95.0, 94.6∗ 1.003, 94.8, 94.6∗

100 opt1-s 1.003, 95.1, 94.6 1.003, 95.0, 94.7 1.006, 94.9, 94.6
100 opt2-j 1.012, 93.4, 94.6∗ 1.003, 94.6, 94.6∗ 1.058, 94.2, 94.6∗

100 opt2-s 1.006, 95.0, 94.5 1.003, 95.0, 94.6 1.159, 93.5, 94.6∗

100 alr1 1.021, 94.9, 94.5 1.015, 94.7, 94.6 1.014, 94.6, 94.5∗

100 alr2 1.020, 94.3, 94.5∗ 1.015, 93.9, 94.6∗ 1.049, 92.3, 94.4•

500 unstr 1.012, 94.9, 94.8 1.009, 94.8, 94.7 1.019, 94.8, 94.7
500 exch 1.019, 93.4, 94.9 1.010, 93.4, 95.2 1.014, 87.5, 94.9
500 ind 1.021, 90.5, 94.9 1.010, 89.9, 95.0 1.016, 88.2, 94.9
500 item 1.018, 90.5, 90.5 1.009, 89.8, 89.9 1.012, 88.2, 88.2
500 time 1.004, 95.0, 94.8 1.003, 95.2, 95.0 1.010, 95.0, 94.9
500 opt1-j 1.000, 95.3, 94.9∗ 1.002, 95.2, 95.1 1.006, 94.9, 95.0∗

500 opt1-s 1.002, 95.0, 94.9 1.002, 95.2, 95.1 1.006, 95.0, 95.0
500 opt2-j 1.006, 94.3, 94.9∗ 1.001, 95.1, 95.1 1.053, 94.3, 95.0∗

500 opt2-s 1.004, 95.1, 94.9 1.001, 95.0, 95.1 1.053, 94.4, 95.0
500 alr1 1.018, 95.0, 95.0 1.012, 95.0, 95.1 1.012, 94.8, 94.9
500 alr2 1.017, 94.4, 95.0 1.011, 94.0, 95.0 1.172, 90.8, 95.1•

Non-convergence rate: 0% (no symbol), 0− 10% (∗), 10− 50% (◦), > 50% (•)
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Table 3: Simulation Results for model B for n = 30, 100, 500 - average RMSE, and average
coverage of 95% confidence interval based on naive variance followed by robust variance,
average is over all mean model parameters

Fitting Correlation Model
n Method Model I Model II Model III

30 unstr 1.435, 85.5, 87.7• 1.410, 85.7, 87.6• 1.341, 81.5, 88.0◦

30 exch 1.025, 91.7, 92.2∗ 1.010, 91.8, 92.5∗ 1.012, 91.6, 93.0∗

30 ind 1.025, 80.9, 92.2∗ 1.010, 80.0, 92.5∗ 1.014, 93.9, 93.0
30 item 1.037, 86.8, 88.5∗ 1.017, 86.1, 88.0∗ 0.999, 88.7, 91.3∗

30 time 0.905, 88.6, 90.0∗ 0.863, 88.4, 89.8∗ 0.948, 97.5, 97.6∗

30 opt1-j 0.883, 93.7, 92.8◦ 0.855, 93.3, 92.7◦ 0.946, 93.7, 93.0◦

30 opt1-s 0.916, 93.0, 92.5∗ 0.875, 93.0, 92.6∗ 0.945, 94.0, 93.0∗

30 opt2-j 0.919, 90.5, 92.5∗ 0.875, 90.7, 92.6◦ 0.975, 93.8, 93.1◦

30 opt2-s 0.955, 92.1, 92.6∗ 0.907, 91.8, 92.8∗ 1.149, 93.7, 93.2∗

30 alr1 0.941, 93.1, 91.6◦ 0.939, 92.6, 91.7◦ 0.923, 95.3, 93.0◦

30 alr2 1.020, 92.3, 91.1◦ 0.991, 91.8, 91.3◦ 0.930, 95.7, 93.5•

100 unstr 1.300, 89.8, 91.9◦ 1.304, 90.3, 91.9◦ 1.097, 90.8, 92.7∗

100 exch 1.031, 93.6, 93.9 1.010, 93.5, 93.8 1.013, 93.6, 94.2
100 ind 1.031, 82.3, 93.9 1.010, 81.3, 93.8 1.013, 94.1, 94.2
100 item 1.033, 88.6, 89.4∗ 1.016, 88.0, 88.6∗ 1.012, 90.8, 91.6
100 time 1.013, 89.2, 89.8∗ 1.005, 88.7, 89.3∗ 1.015, 97.1, 97.4
100 opt1-j 1.011, 94.3, 94.0∗ 1.011, 93.7, 93.7∗ 1.015, 94.5, 94.2∗

100 opt1-s 1.016, 94.0, 93.9∗ 1.011, 93.7, 93.8∗ 1.014, 94.9, 94.2
100 opt2-j 1.032, 91.3, 93.7∗ 1.013, 91.9, 93.8∗ 1.024, 95.3, 94.2∗

100 opt2-s 1.076, 92.5, 93.8∗ 1.079, 92.3, 93.9∗ 1.040, 95.3, 94.2∗

100 alr1 1.061, 91.9, 93.4∗ 1.044, 91.5, 93.4∗ 1.020, 95.1, 93.7∗

100 alr2 1.049, 91.4, 93.3◦ 1.027, 90.5, 93.2◦ 1.041, 94.9, 95.3•

500 unstr 1.143, 94.1, 94.8∗ 1.154, 93.8, 94.6∗ 1.012, 94.4, 94.8∗

500 exch 1.023, 95.5, 95.6 1.006, 95.4, 95.6 1.009, 94.6, 95.0
500 ind 1.023, 84.3, 95.6 1.006, 84.2, 95.6 1.009, 94.7, 95.0
500 item 1.021, 90.6, 91.0 1.010, 90.4, 90.4 1.009, 91.7, 92.0
500 time 1.010, 91.1, 91.2 1.006, 91.4, 91.3 1.005, 97.6, 97.9
500 opt1-j 1.007, 95.7, 95.5∗ 1.008, 95.2, 95.5∗ 1.004, 95.4, 94.9∗

500 opt1-s 1.008, 95.3, 95.5 1.010, 95.2, 95.5 1.005, 95.7, 94.9
500 opt2-j 1.014, 93.9, 95.5∗ 1.003, 94.2, 95.6∗ 1.009, 96.2, 94.9∗

500 opt2-s 1.014, 94.6, 95.5 1.008, 94.1, 95.6 1.010, 96.2, 94.9
500 alr1 1.064, 93.0, 95.5 1.055, 92.8, 95.4 1.005, 95.9, 94.8
500 alr2 1.042, 92.6, 95.3◦ 1.042, 92.0, 95.1◦ 1.178, 92.4, 95.4•

Non-convergence rate: 0% (no symbol), 0− 10% (∗), 10− 50% (◦), > 50% (•)
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Table 4: Type I errors for β01 and β11 in model A for n = 30, 100, 500 based on naive variance
followed by robust variance

Fitting Correlation Model
n Method Model I Model II Model III

30 unstr 10.7, 10.6, 11.6, 12.9∗ 10.2, 10.4, 11.0, 12.2∗ 11.4, 10.6, 11.9, 12.6∗

30 exch 6.59, 6.67, 6.13, 7.32 6.66, 6.77, 6.15, 7.09 12.9, 11.9, 7.07, 7.25
30 ind 9.20, 9.60, 6.13, 7.35 10.1, 9.76, 6.13, 7.01 12.1, 10.9, 7.01, 7.25
30 item 9.28, 9.72, 9.81, 10.2 10.1, 9.81, 10.6, 10.3 12.1, 11.1, 12.6, 11.7
30 time 5.04, 5.12, 6.03, 7.40 5.06, 5.28, 6.07, 7.00 6.77, 5.77, 6.90, 7.39
30 opt1-j 4.68, 4.77, 6.05, 7.35∗ 5.03, 5.28, 6.22, 6.88∗ 6.66, 5.83, 6.96, 7.44∗

30 opt1-s 5.05, 5.17, 6.07, 7.40 5.12, 5.28, 6.17, 6.91 6.85, 5.88, 6.96, 7.34
30 opt2-j 6.92, 7.29, 6.05, 7.14∗ 6.33, 6.42, 5.97, 6.96∗ 7.39, 6.80, 7.09, 7.58◦

30 opt2-s 5.13, 5.22, 6.04, 7.29∗ 5.05, 5.32, 6.04, 6.96∗ 6.85, 6.09, 7.20, 7.71∗

30 alr1 4.82, 5.10, 6.05, 7.51∗ 4.92, 5.37, 6.31, 6.99∗ 6.88, 5.93, 7.01, 7.58∗

30 alr2 5.38, 5.50, 6.05, 7.33◦ 5.73, 5.82, 6.03, 6.95◦ 8.14, 7.01, 6.74, 7.71•

30 glmm 5.26, 6.89∗, −−, −− 5.44, 6.94∗,−−, −− 8.87, 7.74∗, −−, −−
100 unstr 6.13, 6.33, 6.13, 6.82∗ 5.90, 6.66, 5.90, 7.21 6.65, 8.31, 6.76, 8.25∗

100 exch 6.26, 6.86, 4.83, 5.84 6.44, 7.13, 4.90, 5.89 13.4, 13.7, 5.43, 6.32
100 ind 9.75, 9.75, 4.86, 5.80 10.0, 10.5, 4.89, 5.81 12.6, 13.0, 5.32, 6.32
100 item 9.67, 9.71, 9.80, 9.87 10.1, 10.6, 10.2, 10.7 12.9, 13.5, 13.1, 13.7
100 time 4.70, 5.11, 4.99, 5.78 4.82, 5.30, 4.93, 5.70 5.98, 6.65, 5.48, 6.65
100 opt1-j 4.39, 4.91, 4.89, 5.88∗ 4.75, 5.35, 4.91, 5.75∗ 6.20, 6.93, 5.37, 6.43∗

100 opt1-s 4.72, 5.17, 4.87, 5.92 4.80, 5.35, 4.92, 5.70 6.04, 6.93, 5.32, 6.48
100 opt2-j 6.28, 6.72, 4.89, 5.80∗ 5.25, 5.66, 4.92, 5.74∗ 6.09, 6.87, 5.43, 6.37∗

100 opt2-s 4.69, 5.23, 4.95, 5.87 4.82, 5.26, 4.91, 5.77 6.04, 6.81, 5.43, 6.37∗

100 alr1 4.17, 4.80, 4.82, 5.77 4.49, 5.10, 4.96, 5.64 5.71, 6.20, 5.71, 5.98∗

100 alr2 5.07, 5.55, 5.01, 5.81∗ 5.33, 5.99, 5.03, 5.77∗ 8.42, 8.86, 4.93, 5.98•

100 glmm 4.90, 6.70, −−, −− 5.01, 6.91, −−, −− 7.70, 8.48∗, −−, −−
500 unstr 5.68, 4.62, 5.73, 4.87 6.35, 5.10, 6.35, 5.25 5.76, 4.97, 5.68, 5.09
500 exch 7.14, 6.13, 5.68, 4.92 7.65, 6.30, 5.75, 4.90 14.0, 12.6, 5.51, 4.88
500 ind 10.3, 9.10, 5.68, 4.72 11.3, 9.70, 5.95, 4.80 13.1, 12.0, 5.55, 4.88
500 item 10.3, 9.15, 10.4, 9.20 11.3, 9.65, 11.3, 9.70 13.0, 12.0, 13.1, 11.9
500 time 5.28, 4.67, 5.38, 4.92 5.80, 4.70, 5.90, 5.00 6.09, 5.01, 5.68, 4.88
500 opt1-j 5.18, 4.42, 5.33, 4.87∗ 5.80, 4.70, 5.80, 5.00 6.18, 5.22, 5.68, 4.63∗

500 opt1-s 5.28, 4.62, 5.28, 4.92 5.85, 4.65, 5.80, 5.05 6.14, 5.09, 5.68, 4.63
500 opt2-j 6.08, 5.38, 5.48, 4.92∗ 5.80, 4.65, 5.08, 4.90 6.68, 5.80, 5.93, 4.72∗

500 opt2-s 5.33, 4.77, 5.38, 4.97 5.80, 4.65, 5.80, 4.90 6.72, 5.76, 5.88, 4.72
500 alr1 5.28, 4.27, 5.53, 4.72 5.55, 4.35, 6.00, 4.70 6.18, 4.80, 5.84, 4.88
500 alr2 5.68, 4.92, 5.43, 4.97 6.35, 5.60, 5.90, 5.15 11.4, 9.47, 5.51, 4.47•

500 glmm 5.68, 5.93, −−, −− 6.35, 6.05, −−, −− 7.89, 6.84, −−, −−
Non-convergence rate: 0% (no symbol), 0− 10% (∗), 10− 50% (◦), > 50% (•)
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Table 5: Type I errors for β01 and β11 in model A∗ for n = 30, 100, 500 based on naive
variance followed by robust variance

Fitting Cluster Size n
Method 30 100 500

unstr 9.76, 9.35, 10.7, 12.1∗ 6.05, 6.38, 6.15, 6.61 5.58, 5.70, 5.58, 5.72
exch 7.80, 7.30, 6.01, 7.05 7.85, 8.48, 4.88, 5.68 8.91, 9.15, 5.40, 5.44
ind 9.28, 8.89, 5.98, 7.02 9.39, 10.2, 4.89, 5.71 10.5, 10.9, 5.40, 5.40
item 9.28, 8.86, 9.63, 9.56 9.39, 10.2, 9.52, 10.2 10.5, 10.9, 10.5, 11.0
time 5.32, 5.30, 5.92, 7.00 5.26, 5.58, 4.95, 5.61 5.92, 5.88, 5.42, 5.40

opt1-j 6.03, 5.86, 5.90, 6.99∗ 5.86, 6.17, 4.99, 5.57∗ 6.70, 6.62, 5.52, 5.32∗

opt1-s 5.28, 5.30, 5.91, 6.99 5.27, 5.61, 4.99, 5.58 5.92, 5.90, 5.44, 5.42
opt2-j 5.48, 5.36, 5.94, 7.00∗ 5.19, 5.54, 4.98, 5.59∗ 5.94, 5.90, 5.40, 5.40
opt2-s 5.30, 5.28, 5.94, 7.03 5.19, 5.54, 4.98, 5.59 5.94, 5.90, 5.40, 5.40
alr1 5.66, 5.49, 6.13, 7.08 5.14, 5.54, 4.97, 5.61 5.84, 5.80, 5.60, 5.38
alr2 6.81, 6.67, 5.90, 7.02∗ 6.54, 6.74, 4.96, 5.63 7.08, 7.08, 5.32, 5.42

glmm 6.38, 6.84∗, −−, −− 6.18, 6.29, −−, −− 5.00, 5.63, −−, −−
Non-convergence rate: 0% (no symbol), 0− 10% (∗), 10− 50% (◦), > 50% (•)
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Table 6: Results for model B and n = 30, 100, 500 - 100×MSE and coverage of 95% confidence
interval based on naive variance followed by robust variance for the parameters β0 and β1

Fitting Correlation Model
n Method Model I Model III

30 unstr 11.93, 47.778, 85.3, 86.6, 88.9, 88.7• 6.334, 21.652, 80.9, 79.0, 88.0, 87.6◦

30 exch 8.646, 34.025, 93.6, 92.6, 94.4, 92.2∗ 4.462, 16.654, 93.5, 93.1, 93.3, 93.8∗

30 ind 8.646, 34.025, 84.9, 84.5, 94.4, 92.2∗ 4.462, 16.701, 94.4, 94.4, 93.3, 93.8
30 item 8.805, 34.344, 90.2, 89.8, 91.7, 90.6∗ 4.458, 16.375, 92.1, 91.8, 91.7, 93.1∗

30 time 7.980, 29.668, 90.8, 90.1, 92.0, 90.2∗ 4.292, 15.494, 96.8, 96.5, 97.2, 96.1∗

30 opt1-j 7.939, 28.829, 94.9, 94.0, 94.3, 92.0◦ 4.334, 15.403, 94.6, 94.5, 93.1, 94.0◦

30 opt1-s 8.122, 29.992, 94.5, 93.8, 94.2, 92.1∗ 4.305, 15.401, 94.8, 94.5, 93.1, 93.9∗

30 opt2-j 8.144, 30.119, 91.8, 91.2, 94.4, 92.3∗ 4.440, 15.907, 94.9, 94.5, 93.1, 93.9◦

30 opt2-s 8.423, 31.339, 94.1, 93.1, 94.3, 92.0∗ 5.222, 18.749, 95.3, 95.0, 93.1, 94.0∗

30 alr1 8.421, 30.763, 94.9, 92.7, 93.7, 91.7◦ 4.301, 14.963, 94.4, 95.2, 92.3, 93.1◦

30 alr2 8.550, 33.904, 94.5, 92.9, 94.3, 92.2◦ 4.608, 14.804, 94.9, 95.7, 92.6, 93.5•

100 unstr 3.372, 11.01, 88.8, 89.5, 91.6, 90.7◦ 1.318, 4.950, 93.4, 91.0, 94.3, 93.2∗

100 exch 2.715, 8.696, 93.5, 93.0, 93.9, 93.0 1.210, 4.576, 95.2, 93.6, 95.8, 94.4
100 ind 2.715, 8.696, 83.4, 82.9, 93.9, 93.0 1.210, 4.576, 95.2, 93.6, 95.8, 94.4
100 item 2.720, 8.716, 89.1, 88.6, 89.9, 88.8∗ 1.209, 4.573, 92.8, 91.2, 93.4, 92.5
100 time 2.679, 8.537, 89.4, 89.0, 90.3, 89.2∗ 1.208, 4.588, 97.3, 96.8, 98.1, 97.0
100 opt1-j 2.670, 8.522, 94.3, 93.9, 94.0, 93.2∗ 1.208, 4.592, 95.7, 94.6, 95.9, 94.7∗

100 opt1-s 2.685, 8.563, 94.0, 93.6, 93.9, 93.1∗ 1.208, 4.584, 96.0, 94.9, 95.9, 94.8
100 opt2-j 2.717, 8.710, 91.6, 90.9, 94.0, 92.9∗ 1.221, 4.633, 96.2, 94.9, 96.0, 94.5∗

100 opt2-s 2.869, 9.042, 93.3, 92.4, 93.9, 93.0∗ 1.232, 4.708, 96.4, 95.4, 95.9, 94.7∗

100 alr1 2.773, 8.971, 93.1, 90.5, 93.7, 92.5∗ 1.223, 4.605, 96.4, 95.4, 95.3, 94.6∗

100 alr2 2.680, 8.928, 92.7, 90.1, 93.9, 92.7◦ 1.325, 4.622, 94.7, 95.1, 96.0, 94.6•

500 unstr 0.582, 1.640, 93.7, 94.4, 94.5, 94.9∗ 0.243, 0.887, 95.2, 93.8, 94.9, 94.9∗

500 exch 0.530, 1.459, 94.7, 95.8, 95.0, 95.7 0.242, 0.883, 95.7, 93.7, 95.4, 94.6
500 ind 0.530, 1.459, 83.1, 85.3, 95.0, 95.7 0.242, 0.883, 95.6, 93.7, 95.4, 94.6
500 item 0.528, 1.457, 90.2, 91.4, 90.3, 91.9 0.242, 0.883, 92.9, 91.1, 92.1, 92.2
500 time 0.524, 1.440, 90.5, 91.7, 91.3, 91.5 0.242, 0.879, 97.9, 97.2, 98.3, 97.2
500 opt1-j 0.520, 1.438, 95.1, 95.7, 95.1, 95.5∗ 0.241, 0.879, 96.1, 94.6, 95.5, 94.6∗

500 opt1-s 0.522, 1.439, 94.8, 95.6, 95.1, 95.5 0.242, 0.879, 96.2, 94.9, 95.5, 94.6
500 opt2-j 0.525, 1.447, 93.3, 94.2, 95.3, 95.3∗ 0.243, 0.882, 96.7, 95.6, 95.4, 94.8∗

500 opt2-s 0.527, 1.445, 94.0, 95.1, 95.3, 95.5 0.243, 0.883, 96.7, 95.5, 95.5, 94.8
500 alr1 0.539, 1.530, 93.9, 92.4, 95.4, 95.4 0.240, 0.881, 96.6, 95.3, 95.4, 94.3
500 alr2 0.535, 1.491, 93.3, 91.9, 95.4, 95.4◦ 0.361, 0.952, 90.3, 94.7, 95.8, 95.1•

Non-convergence rate: 0% (no symbol), 0− 10% (∗), 10− 50% (◦), > 50% (•)
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