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Abstract

We propose a general test of whether a time series model, with parameters es-
timated by minimising the single-step forecast error sum of squares, is robust with
respect to multi-step prediction, for some specified lead-time. The test may be applied
to a, possibly seasonal, ARIMA model using the parameters and residuals following
maximum likelihood estimation. It is based on a score statistic, evaluated at these
estimated parameters, that measures the sensitivity of the multi-step forecast error
variance with respect to the parameters. We show that the test has acceptable size
properties for higher lead times, when applied to the exponentially weighted moving
average predictor, and investigate how its power varies with the lead time, under the
simple ARMA(1,1) alternative. We also demonstrate the high power of the test when
it is applied to a process generated as the sum of a stochastic trend and cycle plus
noise, which has been modelled by an autoregression. We use frequency domain meth-
ods for the derivation and sampling properties of the test, and to give insight into its
application. The test is illustrated on two real series, and a function for its general
application is available from the authors.

Keywords: Diagnostic statistic; Model robustness; Multi-step prediction; Time series

1 Introduction

In this paper we propose a test of whether a (possibly seasonal) ARIMA model with pa-

rameters estimated by maximum likelihood, is robust with respect to multi-step prediction,

for some specified lead-time. The test may be carried out using the model residuals and

estimated parameters. If the result is significant, the test statistic provides an estimate of

the reduction in multi-step forecast error variance, at the specified lead time, that might
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be achieved by re-fitting the model parameters so as to minimise the sum of squares of

multi-step errors. The test is easily extended to provide these re-fitted parameters, using

the method of Haywood and Tunnicliffe Wilson (1997), hereafter referred to as HTW.

We propose this test as a practical solution to a problem that is a current topic of debate;

of deciding the relative merits of two distinct approaches to multi-step forecasting. The first

approach is to fit a parametric process model by minimising the sum of squares of in-sample

single-step forecast errors, or equivalently by maximum likelihood estimation. Multi-step

forecasts, from the end of the series, are then derived from this model. For a linear model

the expected future value may be obtained quite simply, by successively using the single

step predictor, treating each prediction as if it were an observed value. The result is often

termed the plug-in or iterated multi-step (IMS) prediction. The alternative approach is to

construct a direct multi-step (DMS) prediction as a specified function of the observations,

and to choose the coefficients in this predictor by minimising the sum of squares of the

multi-step forecast errors.

Bhansali (1999) reviews many of the earlier contributions to the analysis of this debate,

setting out the problem, and presenting the statistical issues. Chevillon (2007) provides an

exhaustive overview of the current state of this research. The most common DMS predictor,

termed a non-parametric predictor, is of the autoregressive type, i.e. a linear combination of a

finite set of recent process observations. However, every parametric process model gives rise

to an IMS predictor, for example the widely used multi-step exponentially weighted moving

average (EWMA) predictor may be viewed as the predictor from an IMA(1,1) model. A

parametric DMS predictor can therefore be constructed by using the IMS predictor of a

process model but with the parameters determined to minimise the sum of squares of in-

sample multi-step, rather than single step, forecast errors. Bhansali (1999) gave an example

of such a predictor (see also Stoica and Soderstrom, 1984), and HTW show how they can be

constructed and their properties evaluated for a wide range of parametric models.

The advantage of the IMS prediction is that one model suffices for all lead-times, and

whether one is forecasting a future level, trend or cumulative total. It is also more efficient

in the sense of mean square forecast error, provided the process model is correctly specified,

although the efficiency of DMS predictions can be restored if generalised method of moments

(GMM) is used in place of OLS for autoregressive predictors (Chevillon and Hendry, 2005).

The advantage of DMS prediction, as a robust method, is clear when IMS prediction is
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applied using a mis-specified model, as discussed by Findley (1983) and for autoregressive

models by Bhansali (1996). See also Kang (2003) for a recent practical investigation, and Ing

(2003), for a comparative treatment of the asymptotics for stationary autoregressive forms

of IMS and DMS predictors.

It is good practice in time series modelling to guard against model mis-specification

that might disadvantage the IMS predictor, by careful model selection, prior to estimation

by maximum likelihood, followed by diagnostic checking applied to the estimated residuals.

However, model selection is still an uncertain procedure and mis-specification may be subtle,

with portmanteau diagnostics giving no clear indication that the model should be improved

in any particular way. Yet, as our examples illustrate, substantial reduction in forecast

variance may still be possible, at some high lead time. For these reasons, considerable

attention continues to be devoted to resolving the problem of choice between these two

types of predictors. In a recent applied contribution, Marcellino, Stock and Watson (2006)

present the results of a large scale exercise to compare the two approaches using out of

sample assessment of the forecasts. They only considered autoregressive predictors for both

IMS and DMS methods, and examined cases where the number of terms in the predictor

was fixed, or chosen by an information criterion. Two of the points among their conclusions

are, that the IMS method is preferred for a large class of about 80% of their series, and that

the DMS is preferred in the other cases when a low order model has been used. However,

“most if not all of the advantage” of the DMS is eliminated if the number of terms in the

model is increased. They indicate that a model including a moving average term might be

better in these cases.

The test we have proposed provides a practical approach to this problem. As with

the portmanteau statistics, it may be applied immediately following maximum likelihood

estimation. However, the test is valuable to the user because of its more specific nature.

If the result of the test is not significant, for a given lead time, it provides re-assurance of

the adequacy of the model parameters for IMS prediction at that lead time. If the result

is significant, the user can be sure that an immediate gain in forecast accuracy can be

achieved, at that lead time, by re-estimation of the model parameters for DMS prediction.

We do not propose it as a general test of model adequacy; indeed, there is no guarantee,

were it applied for some arbitrary lead time, that it would detect general inadequacy of a

mis-specified model. However, if applied in the circumstances we describe, following careful

model selection, estimation and checking, it can be a valuable new tool.
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(a) (b)

Figure 1: (a) The logarithm of the series of monthly airline passenger totals and (b) the
sample residual autocorrelations following estimation of a seasonal structural model.

To illustrate the test we here present two real examples, the first concerning a seasonal

moving average type of model; the second a non-seasonal autoregression. Consider first

the familiar monthly “Airline” series of Box and Jenkins (1976). The logarithm of the

series is shown in Figure 1 (a) and the sample residual autocorrelations shown in Figure 1

(b), following (approximate maximum likelihood) estimation of the structural model with

seasonal component described by HTW (page 249). See also Harvey (1989). There is some

evidence of model inadequacy in that the sample autocorrelations at lags 3 and 23 lie outside

the nominal 95% limits. The Ljung-Box portmanteau statistic (Ljung and Box, 1978) based

on residual autocorrelations up to lag 25, was 31.6 on 22 d.f., corresponding to a p-value of

8.4%. Applying our test for lead time 6 gave a highly significant result, with a p-value of

0.3%. From the value of the test statistic we also estimate a potential reduction in forecast

error variance of 12% at that lead time, that may be achieved by re-estimation of the model

parameters.

For our second example we take the series of quarterly seasonally adjusted USA unem-

ployment rate for the period 1948 to 1979, shown in Figure 2, together with its sample partial

autocorrelation function, calculated following a square root transformation (a Box-Cox pa-

rameter of 0.48 was estimated by maximum likelihood). A third order autoregressive model

was selected for this series using the AIC (Akaike, 1973). The residual autocorrelation and

spectrum are shown in Figure 3. There is no obvious sign of model inadequacy, though the

Ljung-Box portmanteau test statistic for the first 20 residual autocorrelations is 25.98 on 17

d.f. with a p-value of 7.5%, and that using the first 30 values is 39.97 on 27 d.f. with p-value

of 5.1%. On applying our test with a lead time of 30 quarters (71
2

years), we obtained a
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(a) (b)

Figure 2: (a) The quarterly seasonally adjusted USA unemployment rate from 1948 to 1979,
together with (b) the sample partial autocorrelations of the square root transformed series.

p-value of 1%, and the test statistic indicated a potential reduction of 30% in the multistep

forecast error variance. Fitting the AR(3) DMS predictor actually gave a reduction of 43%,

but the statistical significance of this could not be directly assessed, because the regression

errors are highly correlated.

(a) (b)

Figure 3: (a) The residual sample autocorrelations and (b) the sample spectrum of the
residuals, from fitting an AR(3) model to the transformed USA unemployment rate series.

Our test statistic is therefore valuable because of its known sampling properties, which we

derive in the next section of this paper. In Section 3 we carry out an empirical study to verify

its size when applied to the IMA(1,1) model, and evaluate its power against the alternative

of an ARMA(1,1) process. This is motivated by an original investigation by Cox (1961) into

the robustness of the EWMA for multi-step prediction, which was more recently taken up by

Tiao and Xu (1993). They carried out a test for a significant change in the moving average

parameter when the model was re-estimated to minimise the sum of squares of multi-step
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forecast errors. They show that their test can have greater power than the Ljung-Box test in

this context. However, the parameter in this case is non-linear, and their test encounters a

practical limitation when applied to lead times of greater than two, because of the tendency

of the multi-step estimate to take the unit value on the boundary of the parameter space.

Our test statistic is well defined for higher lead times and we are able to illustrate the effects

on the power, of the choice of lead time. The investigation in Section 4 is motivated by the

foregoing example of the USA unemployment series and the use of autoregressive predictors.

We postulate a type of model mis-specification that might explain the significant result in

that example. Based on this we formulate a model for use in a simulation exercise to confirm

the size properties of our test in the context of an autoregressive predictor, and its power

against a realistic alternative. We give some brief concluding comments in Section 5.

2 A score-type test

The score statistic that we now investigate is proposed in the discussion of HTW. Frequency

domain methods for the estimation of time series models have received renewed interest in

recent years, e.g. in the estimation of structural models, Harvey (1989, Section 4.3), and

parameters of long-memory processes, Beran (1994, chapter 6). See also Haywood and

Tunnicliffe Wilson (2000a,b). These methods are based on the sample spectrum of the

observations, using what is termed the Whittle likelihood. An advantage of spectrum based

estimation is that it can provide greater insight into the statistical properties than time

domain methods, as HTW shows for the multi-step estimation problem. This is because of

the asymptotic independence properties of the sample spectrum ordinates, which we exploit

again in this paper to derive the properties of our test statistic.

This new test statistic is evaluated following estimation of the model parameters by min-

imising the single-step forecast error variance, equivalent in large samples to using maximum

likelihood. We show that the size properties of the statistic are reliable, even at higher lead

times, under the null hypothesis that the correct model has been fitted. Because of the

direct correspondence between frequency and time domain methods, the statistic may also

be expressed as a low rank quadratic form in the usual residual sample autocorrelations,

upon which the familiar portmanteau statistics of Box and Pierce (1970) and Ljung and Box

(1978) are also based. The models that we use for illustration in this paper are equivalent to

moving average and autoregressive models, though differently parameterised. We explain in

6



Appendix C how our test might be implemented following maximum likelihood estimation,

by time domain methods, of the conventionally parameterised ARIMA models. The statistic

is formed from a local gradient (or score) and Hessian matrix, so as to approximate the

reduction in the multi-step error variance that would result from the re-estimation of the

model to minimise that criterion. We show that its asymptotic distribution is a weighted

sum of independent chi-squared variables on one degree of freedom.

We introduce the statistic by briefly reviewing the background to spectral model fitting,

and extending some of the methodology and notation introduced by HTW. We assume

that the observed time series under consideration, xt, may be modelled as an (possibly)

integrated process that requires differencing of order d ≥ 0 to yield a stationary process wt

with autocovariance function γk. The assumption that wt is Gaussian is sufficient for our

development, but we make reference to much more general conditions in Appendix A. We

also suppose that the model for wt has a spectrum S(f) = γ0 + 2
∑

∞

k=1 γk cos(2πkf), for

−1
2
≤ f ≤ 1

2
, which has a linear form with coefficients β1, . . . , βk:

S(f ; β) =
k
∑

i=1

βiSi(f), (1)

where β is the column vector of coefficients. This encompasses the standard moving average

model, though not with the usual parameterisation, and the structural models of Harvey

(1989). Our theoretical treatment will be limited to this form of model, but we explain in

Appendix C how we can extend these models to reciprocals, ratios and products of such a

linear form, which encompasses ARMA models. For now we assume, as is true for all the

examples we have come across, that Si(f) are smooth functions of f . We also assume that

wt can be represented by a model in this class for which S(f ; β) is bounded away from zero,

and will restrict the parameter space to ensure this condition.

It is important that we explain how the linear model will first be fitted to the sample

spectrum of a finite record of wt, t = 1, . . . , n:

S∗(f) =
1

n

∣

∣

∣

∣

∣

n
∑

t=1

wt exp(i2πft)

∣

∣

∣

∣

∣

2

, (2)

by approximate maximum likelihood estimation of β using the ‘Whittle likelihood’; see Beran

(1994, chapter 6) and Taniguchi and Kakizawa (2000, sections 3.1 and 6.2):

∫

1
2

f=−
1
2

{logS(f ; β) + S∗(f)/S(f ; β)}df. (3)

7



This is an approximation to −2/n times the log likelihood, and is minimised to estimate β.

In practice a finite sum over the harmonic frequencies fj = j/n for j = 0, . . . , n− 1 is used:

n−1
∑

j=0

{logS(fj ; β) + S∗(fj)/S(fj; β)} , (4)

which approximates to minus twice the log likelihood. We will use both the integral form,

such as (3), of the expressions we use in our development below, and also, where appropriate,

the summation form such as (4). See Appendix A for a discussion of their relationship and

underlying assumptions. Expressions for the large sample results we present are naturally

couched in terms of integrals. However, the summation form of the likelihood (4) admits

a heuristic argument for its use. It corresponds to that obtained by treating the sample

spectrum as data, with the distributional properties that, for 0 < fj <
1
2
, S∗(fj) are realized

values of independent exponential random variables with mean S(fj). For the anomalous

frequencies fj = 0 and (if n is even) fj = 1
2
, the distribution is gamma with shape parameter

1
2
, but still with expectation S(fj). Because S∗(fn−j) = S∗(fj) all except these anomalous

frequencies are duplicated in (4), which then conveniently results in the correct expression

for minus twice the log likelihood.

Part of the derivation of the large sample properties of our test statistic, presented in

Appendix B, will be based on this argument, because it enables us to treat the fitting prob-

lem as an example of Generalised Linear Modelling (GLM), McCullagh and Nelder (1989).

This is pointed out, for example, by Diggle (1990, p124) and Beran (1994, chapter 6). The

re-weighted least squares (RLS) algorithm then provides a practical procedure for model es-

timation, which was extended in HTW to multi-step estimation. This algorithm is described

now because of its place in the construction of our test statistic and the development of its

properties.

Let β denote a general parameter value, β0 the true value under the null hypothesis and

β̂ the value that minimises (4). Define the response and regression functions, weighted by

1/S(f ; β):

Y (f ; β) = S∗(f)/S(f ; β) and Xi(f ; β) = Si(f)/S(f ; β), (5)

and corresponding n × 1 response vector Y and n × k regression matrix X with elements

Yj = Y (fj ; β) and Xj,i = Xi(fj; β). The weighted regression step provides a new parameter

as a solution to the least squares equations X ′Xβnew = X ′Y . For the first step the

regression is unweighted and thereafter a sequence βs, s = 1, 2, . . . is generated, with Y and
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X updated at each step. An iterate may have to be scaled back towards the previous value

if it yields S(f ; β) with a negative value for some f , but with such a correction the sequence

is found in practice to converge rapidly to the global minimum. The estimate then satisfies

X̂ ′X̂β̂ = X̂ ′Ŷ , where we have emphasised, by using X̂ and Ŷ , their implicit dependence

upon β̂. We will refer to β̂ as the GLM estimates.

To define our test statistic we first review the development (as in HTW) of an expression

for the mean sum of squares (MSS) of the L-step ahead prediction errors which may be

realised by applying the model (1) to the given series xt. We first express

S(f ; β) = σ2|ψ{exp(i2πf)}|2 (6)

so that the moving average representation of the model for wt is

wt = (1 + ψ1B + ψ2B
2 + · · ·)et = ψ(B)et, (7)

where et = ψ(B)−1wt, with variance σ2, is the white noise linear innovation (or one-step

forecast error) process of wt.

Taking z to be a complex variable lying in the unit circle, expand Ψ(z) = (1−z)−dψ(z) =

1 +
∑

∞

k=0 Ψkz
k and define ΨL−1(z) = 1 +

∑L−1
k=0 Ψiz

k. Then the error et(L) in the multi-step

prediction of xt+L made at time t, that results from applying this model, is expressed as

et(L) = et+L + Ψ1et+L−1 + · · ·+ ΨL−1et+1 = ΨL−1(B)et+L = ΨL−1(B)ψ(B)−1wt+L. (8)

The required mean sum of squares (MSS) of the L-step ahead prediction errors then has the

frequency domain approximation

FL(β) =

∫ |ΨL−1{exp(i2πf)}|2

|ψ{exp(i2πf)}|2
S∗(f)df =

∫

GL(f ; β)
S∗(f)

S(f ; β)
df, (9)

where GL(f ; β) = σ2 |ΨL−1{exp(i2πf)}|2. The limits in these and all subsequent integrals

are taken to be those in (3).

The test statistic may now be defined in terms of a k-dimensional negative gradient (or

score) vector g(β) and (expected) Hessian matrix H(β) of FL(β). Let their values at the

GLM estimate β̂ be respectively ĝ and Ĥ . Then the test statistic we propose is

q̂ = ĝ′Ĥ−1ĝ. (10)

We review the expressions for g and H , as given in HTW, because they are required to

establish the large sample properties of q̂. First we define a new set of linear functions
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Zi(f ; β) of Xi(f ; β) as

Zi(f ; β) = 2 Re
(

σ2ΨL−1{exp(−i2πf)} [ΨL−1{exp(i2πf)}Xi(f ; β)]∞L
)

, (11)

where Re( . ) indicates the real part and the operator [ . ]∞L removes all the Fourier coeffi-

cients with index less than L from its argument. Its numerical implementation using the

discrete Fourier transform is very efficient. Of course this requires a finite Fourier series

approximation, but for the smooth bounded functions that arise in practice, the order of the

discrete transform can be chosen to ensure that the error is negligible. We will note for later

use that
∫

Zi(f)df = 0. We then have the elements of g(β) and Hessian matrix H(β) given

by

gi =

∫

Zi(f)Y (f)df and Hi,j =

∫

Zi(f)Xj(f)df. (12)

Although the expression for H is not symmetric, it may be expressed in a form which

demonstrates its symmetry (see HTW Appendix A). In practice we use summation forms of

the expressions in (12); see Appendix A of this paper.

We remark that the quantity 1

2
q̂ is an approximation (under a locally quadratic assump-

tion) to the reduction that may be achieved in the L-step prediction criterion FL(β) from

its value at β̂ to its overall minimum. This minimum is achieved close to β̂ + δ where δ is

a solution of Ĥδ = ĝ, so that q may also be expressed as ĝ′δ. However, as noted in HTW,

the solution of Hδ = g for δ is in general unique only up to a multiple of the value β used

to construct g and H ; a consequence of the fact that, by construction,
∑

βiXi(f) ≡ 1 and
∑

βiZi(f) ≡ 0, so that β′g = 0 and β′H = 0. The particular choice of solution does not

affect the value of q, but to overcome this singularity, we propose that whenever the inverse

of H(β) is required, it is replaced by the inverse of the augmented matrix H(β)+αββ′, for

some α > 0, which is, in general, strictly positive definite. It is readily checked (premultiply

the equations by β′) that the solution δ of (H + αββ′)δ = g is actually orthogonal to β

and is consequently also a solution of Hδ = g. We will assume hereafter that H has been

augmented in this manner in the definition (10) and other expressions involving H−1, but,

for convenience of notation, we will not explicitly show this.

Theorem Under the null hypothesis that wt is a stationary Gaussian process with a

spectrum belonging to the class (1), with parameter β0, and bounded away from zero,

1
2
nq̂

d→
k−1
∑

i=1

diCi,

10



where Ci are independent chi-squared random variables on 1 d.f. and di are the non-zero

eigenvectors of H−1V − F−1H , the k × k matrices V and F having elements defined by

Vi,j =

∫

Zi(f)Zj(f)df and Fi,j =

∫

Xi(f)Xj(f)df. (13)

All these matrices are evaluated at β0. However, they are all continuous functions of β, so

consistent estimates of di may be determined by substituting β̂. A consistent critical value

c may therefore be calculated for a test with specified size, which rejects the null when q

exceeds c. Note that di are also the eigenvectors of the k × k symmetric matrix RH−1R′

where R′R = V − HF−1H .

Proof

We first express ĝ in the summation form (see Appendix A)

ĝ = n−1Ẑ ′(Ŷ − 1) (14)

where Ẑ is the n × k matrix with elements Zj,i = Zi(fj; β), evaluated at β = β̂. The

property
∫

Zi(f)df = 0 ⇒ Z ′1 = 0, allows us to subtract 1 from Ŷ . The essential part of

the proof is contained in the

Lemma

(i)

Ĥ−1 = H−1 + op(1) (15)

and

(ii)

n
1

2 ĝ = n−
1

2 W ′(Y − 1) + op(1), (16)

where the k×nmatrix W ′ = Z ′−HF−1X′ and all quantities on the RHS are evaluated

at β0. Furthermore n−1W ′W = V − HF−1H .

The proof of this lemma is presented in Appendix B, but we remark here that the

correction to Z, in the expression for W , is to allow for the difference between the true

and residual spectra, respectively Y and Ŷ . This corresponds precisely to the correction to

the properties of the sample autocorrelation function required to establish the distribution

of the portmanteau statistic of Box and Pierce (1970).

To complete the proof of the theorem, express V − HF−1H = R′R, where R is an

upper right Choleski factor, so that W = QR where the n×k matrix Q satisfies Q′Q = n I.
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Further, form the eigenvalue decomposition of RH−1R′ = UDU ′ where D is diagonal with

elements di and U is k × k and orthonormal. Set QU = A which is n × k and satisfies

A′A = n I. Furthermore, the elements of A are given by Aj,i = Ai(fj; β0) where Ai(f)

are orthonormal functions, well defined by the foregoing construction in terms of Xi(f) and

Zi(f). Then from the Lemma, 1
2
nq̂ differs by op(1) from

1
2
n−1(Y − 1)′WH−1W ′(Y − 1) = 1

2
n−1(Y − 1)′ADA′(Y − 1) =

k
∑

i=1

di
1
2
u2

i , (17)

where

ui = n−
1

2

∑

j

Aj,i (Yj − 1) = n
1

2

∫

Ai(f ; β0) {Y (f ; β0) − 1} df. (18)

Lemma 3.1.1 of Taniguchi and Kakizawa (2000, p56) may now be applied directly (see

the discussion in Appendix A) to the quantities ui to show that they have an asymptotic

jointly normal distribution with covariance matrix 2 I. Consequently 1
2
u2

i are asymptotically

independent chi-squared variables each on one degree of freedom.

3 Assessment of the statistic for the IMA(1,1) model

We here suppose that the Gaussian series xt is the sum of a random walk with innovation

variance β1 and independent white noise with variance β2. The spectrum of wt = (1 −B)xt

is then parameterised as

S = β1 + β2{2 − 2 cos(2πf)}. (19)

There is an IMA(1) representation of (1−B)xt = (1− ηB)et, where β1/β2 = (1− η)/
√
η. In

this case H is of rank 1, so we can take q/2d1 to be asymptotically chi-squared on 1 degree

of freedom.

We carried out a simulation study to investigate the accuracy, under the null hypothesis,

of the distributional approximation we have presented for this statistic. Our aim was to assess

the reliability of the size of the test for a range of parameter values and lead times. Further,

we investigate the power of the test under the alternative hypothesis of an ARMA(1,1) model.

This exercise was motivated in large part by the original consideration by Cox (1961) of the

robustness of the IMA(1,1) model, for prediction of an ARMA(1,1) process, and the more

recent investigation by Tiao and Xu (1993), of a chi-squared test statistic based upon re-

estimation of the parameter η of the IMA(1,1) model. Our scaled statistic q/2d1 may be

considered a local version of this, and the two should be asymptotically equivalent. For the
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combinations of nominal size, lead time, value of η and series length given in Table 1, 10,000

replications were performed to obtain the empirical sizes of our test statistic, displayed in

the table.

Lead Nominal Length of η
time size series 0 0.2 0.4 0.6 0.8

0.1 50 0.094 0.096 0.091 0.091 0.099
(10%) 100 0.094 0.096 0.093 0.094 0.093

2 200 0.099 0.097 0.092 0.093 0.097
0.05 50 0.046 0.046 0.043 0.040 0.054
(5 %) 100 0.046 0.046 0.045 0.045 0.047

200 0.049 0.048 0.046 0.043 0.047
0.1 50 0.088 0.083 0.079 0.080 0.076

(10%) 100 0.091 0.091 0.089 0.089 0.085
4 200 0.095 0.094 0.094 0.094 0.094

0.05 50 0.040 0.038 0.039 0.036 0.039
(5 %) 100 0.044 0.041 0.041 0.042 0.043

200 0.047 0.047 0.045 0.046 0.047
0.1 50 0.075 0.069 0.066 0.063 0.053

(10%) 100 0.082 0.082 0.083 0.081 0.071
10 200 0.090 0.093 0.087 0.088 0.085

0.05 50 0.041 0.036 0.032 0.027 0.021
(5 %) 100 0.043 0.041 0.041 0.037 0.032

200 0.045 0.043 0.044 0.041 0.041

Table 1: Empirical sizes for the test statistic at various lead times, series lengths and param-
eter values, with the (1, η) IMA(1,1) model. 10,000 replications for each tabulated entry.

The empirical size of the test statistic is accurate, or conservative, at all combinations

of parameter values and lead times reported in Table 1, including L = 10. Thus there

is no evidence of the excessive skewness (compared to the relevant asymptotic chi-squared

distribution) reported by Tiao and Xu (1993) for all L > 2, which gave infeasible large

positive size distortions for their proposed statistics, T 2
J and D2

J (J = L− 1). While our test

size does improve with series length, differences are often quite small and the test appears

reasonably sized at moderate lead times, certainly for series of length 100 or greater.

Table 2 presents the empirical power of the test when it was applied to the Gaussian

ARMA(1,1) process as an alternative data generating model, to which the IMA(1,1) was

fitted. Again, 10,000 replications were performed for series generated using each of six

combinations of ARMA parameters (φ > θ ≥ 0) at five lead times and two nominal sizes,

with all series of length 200. Our six combinations of ARMA parameters form a subset
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of those considered by Tiao and Xu (1993) in their Table 3, where comparable maximum

powers for the Ljung-Box statistic, maximised over lags from 2 to 21, are also given. Tiao

and Xu gave empirical powers only for 10% nominal size and only for lead time 2, due to

the excessive size distortions noted above.

Nominal Lead (φ, θ)
size time (0.1, 0.0) (0.4, 0.1) (0.7, 0.4) (0.9, 0.0) (0.9, 0.4) (0.95, 0.3)

2 0.431 0.905 0.557 0.174 0.163 0.108
0.1 4 0.262 0.799 0.714 0.268 0.265 0.136

(10%) 6 0.200 0.643 0.706 0.326 0.318 0.148
8 0.150 0.538 0.666 0.351 0.339 0.154
10 0.127 0.463 0.610 0.363 0.347 0.151
2 0.329 0.840 0.437 0.101 0.091 0.056

0.05 4 0.186 0.712 0.599 0.162 0.165 0.072
(5 %) 6 0.129 0.537 0.583 0.196 0.195 0.079

8 0.090 0.425 0.534 0.197 0.203 0.074
10 0.068 0.341 0.458 0.186 0.194 0.066

Table 2: Empirical powers for the test statistic at various lead times. 10,000 replications
with series of length 200 for each tabulated entry. Testing the (1, η) IMA(1,1) estimated
model against the (φ, θ) ARMA(1,1) data generating process.

Some general patterns are suggested for our test statistic: power decreases with lead time

for ‘moderate’ values of the AR parameter, φ < 0.5 say, while power is maximised at medium

lead times, 2 < L < 10 for higher values of φ. When compared to Tiao and Xu’s (1993, Table

3) statistic T 2
1 , our test has comparable empirical power for some cases, such as φ = 0.9, but

appears less powerful in others. We believe that our accurate or conservative empirical size

explains that difference. For example, Tiao and Xu report empirical sizes for T 2
1 of 16.5%

and 11.7%, at nominal sizes of 10% and 5%, with series of length 100 and η = 0.8.

To interpret the observed patterns in the power of our test statistic, it is necessary to

consider when the IMA(1,1) model could reasonably be expected to fit well a series generated

by an ARMA(1,1) process. With η near unity the IMA(1,1) model can fit well a process

that is close to white noise. Hence combinations of ARMA parameters that impose little

structure, such as φ ≈ θ, can be well modelled by the IMA(1,1). Also, the IMA(1,1) model

can, reasonably well, fit an ARMA(1,1) process with φ close to one. Generated processes

that are more clearly stationary within the sample period, with moderate values of φ, display

reasonably rapid reversion to the mean. In such cases power will be greatest at low lead

times, where the divergence between the autocorrelation structures beyond lag 1 is marked
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but forecast uncertainty is still moderate. Conversely, for generated processes that display

more persistence, with φ close to one, power will increase with lead time, since a greater

horizon is required to differentiate between stationary and integrated observed behaviour.

However, at long lead times, such as L = 10, power tends to reduce, even for φ close to one,

because of the limited information available for discrimination. The figure given on page 246

of HTW shows how parameter estimation of the IMA(1,1) model, to minimise the MSS of

multi-step errors, focuses on information at lower frequencies.

(a) (b)

Figure 4: Analysis of the residuals obtained from MLE of an IMA(1,1) model for an AR(1)
process with parameter 0.9. (a) The lower frequencies of the residual sample spectrum, with
the (scaled) gain function GL(f) used to weight the same sample spectrum in the MSS of 15
step-ahead prediction errors, (b) the sample autocorrelation function of the residuals.

To emphasise this point we carried out one further investigation by simulation of an

alternative ARMA(1,1) process of length 400, with φ = 0.9 and θ = 0, and performing the

test with a lead time L = 15. The greatest advantage from re-estimating the IMA model to

minimise the MSS of multi-step errors, a reduction by a substantial factor of two (Tiao and

Xu, 1993, page 630), is approached under these circumstances. The MLE of η will be close to

1− φ = 0.1, so that most weight is placed upon recent observations in the EWMA, whereas

for a high lead time prediction a value of η close to 1.0 is optimal, so that the forecast is close

to the mean of the stationary autoregression. The residuals from MLE of the mis-specified

IMA(1,1) model, contain, however, only a limited amount of information to point to the

large swing in the moving average parameter needed for high lead time prediction. From a

typical realisation, the evidence may be seen in the rapid reduction in the ordinates of the

residual sample spectrum below frequency 0.02, as shown in Figure 4 (a). The corresponding

effect may be seen in the residual autocorrelations in Figure 4 (b), as a slight downward bias
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at low lags. The (scaled) gain function GL(f) used in the expression (9) for the MSS of

15 step-ahead prediction errors, is shown as a line on Figure 4 (a). By placing weight on

the frequencies below 0.05, our test focuses on the information in the lower 5 to 10 spectral

ordinates, that is available, in a series of this length, for detecting the lack of uniformity in

the residual spectrum. In 10,000 replications, our q statistic demonstrated powers of 0.56

and 0.80 for tests of respective size 5% and 10%, showing that the information supporting

model re-estimation, though limited, can be detected by this test. The corresponding powers

of the Ljung-Box test, using residual autocorrelations up to lag 21, were 0.18 and 0.30.

4 Assessment of the statistic for an autoregressive model

To introduce this section, reconsider the AR(3) model fitted to the seasonally adjusted

series of quarterly USA unemployment, in the introduction. Figure 5 (a) shows the sample

spectrum of that series, together with the spectrum of the fitted model. The sample spectrum

appears to have distinct low frequency peaks, a sharp one close to frequency zero and a broad

peak over the frequency range 0.03 to 0.06 (period 4 to 7 years). However, the fitted spectrum

fails to resolve these peaks. Motivated by this we have investigated the power of our test

(a) (b)

Figure 5: (a) The sample spectrum of the USA unemployment series with the AR(3) model
spectrum superimposed; (b) the sample spectrum of a simulated series with an AR(6) model
spectrum superimposed.

for simulated series which might reflect a similar structure. We chose as an alternative

model, a series composed of the sum of three independent Gaussian components: a near unit

root AR(1) process, an AR(2) process with a spectrum peak approximately centered on the

frequency 0.04, corresponding to a period of 25, and white noise. Thus xt = ut+vt+zt where
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ut = φut−1+at, with φ = 0.99 and var (at) = 1.0; vt = 2r cos(λ)vt−1−r2vt−2+bt with r = 0.98,

λ = 2π/25 and var (bt) = 0.32; and zt is uncorrelated with variance 1.0. To check the size

of the test, we required an approximating autoregressive model of suitable order. From a

simulation of the process xt, use of the AIC selected an autoregressive approximation of

order 6. We therefore determined the AR(6) model φ(B)xt = et that provided the minimum

variance one-step ahead predictor of xt. This had coefficients φ1 = 0.9177, φ2 = 0.2455,

φ3 = −0.0069, φ4 = −0.0892, φ5 = −0.0919, φ6 = −0.0290, and var (et) = 3.6451.

We simulated 10,000 samples of time series with length 200 from this AR(6) model, fitted

an AR(6) model to each sample in the frequency domain, and evaluated the test statistic

for lead times L = 8 and L = 16. These were chosen as substantial fractions of the period

of the stochastic cycle, at which it might be considered important to detect inadequacy of

predictions. The construction of the test statistic for this model is described in Appendix C.

The results of these simulations are shown in Table 3. The empirical sizes are shown for

the nominal sizes of 10% and 5%, for our test statistic q, and for the Ljung-Box test statistic

calculated using residual autocorrelations up to lag 20. For the q statistic the empirical sizes

are slightly conservative for lead time 8, more so for lead time 16. The Ljung-Box test is

slightly over-sized.

Lead time Nominal size q Statistic Ljung-Box
8 0.1 (10%) 0.095 0.113

0.05 (5 %) 0.045 0.056
16 0.1 (10%) 0.084 0.113

0.05 (5 %) 0.035 0.056

Table 3: Empirical size of tests of model adequacy for given lead time and nominal size, for
an AR(6) null model. 10,000 replications for each tabulated entry.

We proceeded to estimate the power of the tests for rejecting the AR(6) model, when

applying it to the alternative model with independent components described above, using

the same series length and number of replications. Table 4 shows that for the test of nominal

size 5% based on the q statistic, applied for lead time 16, an empirical power of over 60%

was achieved against the alternative. In comparison, the Ljung-Box statistic is very much

less powerful. When applied for lead time 8, the power of the q statistic was lower than for

lead time 16, but still noticeably more powerful than the (over-sized) Ljung-Box test.

We can gain some further insight into these results, by calculation of the prediction error
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Lead time Nominal size q Statistic Ljung-Box
8 0.1 (10%) 0.377 0.246

0.05 (5 %) 0.274 0.144
16 0.1 (10%) 0.722 0.246

0.05 (5 %) 0.620 0.144

Table 4: Empirical powers of tests of model adequacy for given lead time and nominal size,
for an AR(6) model fitted to the alternative process with independent components described
in the text. 10,000 replications for each tabulated entry.

variances of the alternative process under the true model, and the best approximating AR(6)

DMS predictor. The prediction error variances for lead times 1, 8 and 16, using the true

model, are respectively 3.28, 24.51 and 31.82. The error variances that are achieved at

the same lead times, using the AR(6) model that minimises the one-step prediction error

variance, are respectively 3.65, 46.15 and 72.61. These are clearly much greater than those of

the true model, for the lead times greater than 1. The error variances that can be achieved,

using, for each respective lead time, the AR(6) DMS predictor, are 3.65, 40.93 and 38.14.

This shows that the potential reduction in prediction error variance that may be achieved

is relatively small at lead time 8, from 46.15 to 40.93. However it is very substantial at lead

time 16, from 72.61 to 38.14, which is not much greater than the value of 31.82 achieved by

the true model. This accords with the results of the power investigation, that suggests it is

quite difficult to detect potential forecast improvement using a lead time of 8 in this case,

but an important potential gain is detected at a lead time of 16. Investigation of several

realisations confirmed the indications gained from the example of USA unemployment. The

residual autocorrelations and spectrum do not show up any clear lack of fit of the AR(6)

model but, as Figure 5 (b) shows, the fitted model spectrum typically fails to resolve the

peaks in the sample spectrum of the series.

5 Conclusion

The potential reduction in the multi-step forecast error that may be gained from re-estimation

of the parameters of a time series model, justifies a test which is sensitive to this possibility.

We have presented a widely applicable test for this purpose, and investigated its small sample

properties in important applications. The methodology of the test also provides insight into

statistical features of the residual spectrum that are associated with a significant outcome.
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Appendix A

Our Theorem is expressed in terms of the vector and matrices g, H , V and F defined using

integral formulae in (12) and (13). However, for our proofs we prefer to use, in place of these,

definitions such as (14) in terms of summation formulae. This has the advantage that we can

use, throughout the proof in Appendix B, familiar matrix notation for the manipulation of

projections and other decompositions which arise from the GLM estimation and its extension

to the multi-step context. In particular we use it to express n−1Z ′X = H , n−1X ′X = F

and n−1Z ′Z = V . It also corresponds precisely to the discrete computational procedures

used to implement the test. The disadvantage is that summation formulae for H , V and F

involve the number of spectral ordinates n, and are strictly only valid for large n. However,

as we note in the following, the discrepancy between an integral and summation formula

decreases exponentially with n, justifying its neglect relative to the stochastic errors.

The elements of H , V and F are typically integrals of an analytic function A(f) with

Fourier coefficients aj , −∞ < j < ∞ which satisfy |aj| < αρj for some 0 ≤ ρ < 1. The

discrete Fourier coefficients of A(f) are then the aliased values ãj = aj +
∑

∞

k=1(aj+kn +

aj−kn), 0 ≤ j ≤ (n− 1). Now

∫

1
2

f=−
1
2

A(f)df = a0 and n−1
n−1
∑

j=0

A(fj) = ã0,

so these integral and summation forms differ by O(ρn).

The elements of g in (12) are integrals of the product of an analytic function with the

sample spectrum, which may be expressed:

∫

1
2

f=−
1
2

A(f)S∗(f)df =

(n−1)
∑

j=−(n−1)

ajCj, (20)

where Cj is the usual sample autocovariance of wt. The sum is finite because Cj is a finite

sequence, the aliased coefficient of which is just Cj + Cj−n. The summation form may be

expressed, using C−j = Cj and taking, for −n < j < 0, ãj=ãj+n, as

n−1
n−1
∑

j=0

A(fj)S
∗(fj) =

(n−1)
∑

j=0

ãj(Cj + Cj−n) =

n−1
∑

j=−(n−1)

ãjCj. (21)

The difference between the integral and summation forms are again O(ρn), and converge to

zero much more rapidly than terms of op(1) in the stochastic approximations we use.
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In practice, in all our computations, the integral form may be replaced by twice the

integral from 0 to 1
2
, and the summation form by twice the sum of the terms for fj between

0 and 1
2
, plus the term for f0 and, if n is even, the term for f 1

2
n. We could approximate

the integrals to arbitrary accuracy using a sum over a larger number of divisions than n,

but this makes little difference to our simulation results. However, the selection of the

harmonic frequencies enables us to use, in Appendix B, asymptotic properties of estimates

of generalized linear models based on the large sample statistical properties of the sample

spectrum at these frequencies. The completion of the proof of the theorem in the text of the

paper refers to Lemma 3.1.1 of Taniguchi and Kakizawa (2000), for which two derivations are

indicated, one depending on detailed distributional properties of the sample spectra, which

are necessary for statistics which are functionals of the whole spectrum. The other is based

upon representing linear functionals of the sample spectrum as linear combinations of the

sample covariances as in (20) and (21) above. These two approaches are valid under very

general, but different, conditions which are stated in the Lemma, and to which we refer the

reader for general conditions which may be applied to our process wt.

Appendix B

Our proof of the Lemma requires properties of the estimate β̂ obtained from the GLM

equations. We use a result of Fahrmeir and Kaufmann (1985, p353), that relates β̂ to the

Fisher information X ′X and score X ′(Y − 1) at β0. We express this result as n
1

2 (β̂− β̃) =

op(1), where β̃ = β0 + (X ′X)−1X ′(Y − 1).

Our stated assumption is that for 0 ≤ j ≤ 1
2
n, Yj = S∗(fj)/S(fj), are independent

Gamma random variables with mean 1 and variance 1, except that for j = 0 and (if n is

even) j = 1
2
n, the variance is 1

2
. Consequently, n

1

2 (β̂s−β0) = Op(1) and (β̂−β0) = Op(n
−

1
2 ),

so that β̂ is consistent for β0. For the first part of the lemma, note that the (augmented)

matrix H is a continuous function of β and bounded away (in norm) from zero, so Ĥ−1 =

H(β0)
−1 +Op(n

−
1
2 ). For the second part, we need to show that

n−
1

2 Ẑ ′

(

S∗ − Ŝ

Ŝ

)

= n−
1

2 Z ′

(

S∗ − S̃

S

)

+ op(1), (22)

where, from (14), the LHS is n
1

2 ĝ. For simplicity of notation, we are using S∗, Ŝ, S̃ and

S for the vectors with elements S∗(fj), S(fj; β̂), S(fj; β̃) and S(fj; β0). Similarly, Ẑ and
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Z have elements Zi(fj ; β̂) and Zi(fj ; β0). The fractions in brackets, here and elsewhere, are

elementwise ratios.

Proof Split both sides of (22) into two components, by expressing, on the left, S∗− Ŝ =

(S∗ −S)− (Ŝ −S), and on the right S∗ − S̃ = (S∗ −S)− (S̃ −S). The difference between

the first components on the left and right may be expressed:

n−
1

2

[

S

(

Ẑ

Ŝ
− Z

S

)]

′

(Y − 1). (23)

Now S and Z are both linear in β, so we may linearise

Ẑ

Ŝ
− Z

S
= ρ(β0) (β̂ − β0) +O

[

(β̂ − β0)
2
]

, (24)

giving

n−
1

2 (β̂ − β0)
′ (ρS)′ (Y − 1) + n−

1

2O(n−1)
∑

|Yj − 1| . (25)

From the statistical properties of Y , (ρS)′ (Y − 1) is Op(n
1

2 ) and
∑ |Yj − 1| is Op(n). But

(β̂ − β0) is Op(n
−

1

2 ), so the overall magnitude of the difference is Op(n
−

1

2 ).

The second component on the left approximates the second on the right as:

n−
1

2

(

Ẑ

Ŝ

)

′

(Ŝ − S)

= n−
1

2

(

Z

S
+Op(n

−
1

2 )

)

′
(

[S̃ − S] + op(n
−

1

2 )
)

= n−
1

2

(

Z

S

)

(S̃ − S) + n−
1

2 n op(n
−

1

2 ) + n−
1

2Op(n
−

1

2 )nOp(n
−

1

2 ) + opn
−

3

2

= n−
1

2

(

Z

S

)

(S̃ − S) + op(1), (26)

where we have used the fact that (Ŝ− S̃) = op(n
−

1

2 ) and (S̃−S) = Op(n
−

1

2 ), and that there

are n terms in the sums involved. To complete the proof, from (22) we express

n−
1

2 Z ′

(

S∗ − S̃

S

)

= n−
1

2 Z ′(Y − Ỹ ) = n−
1

2 Z ′(Y − Xβ̃)

= n−
1

2

(

Z ′Y − Z ′X(X ′X)−1X ′Y
)

= n−
1

2 W ′(Y − 1), (27)

where W ′ = Z ′ − Z ′X(X ′X)−1X ′ = Z ′ − HF−1X ′. We can subtract 1 from Y be-

cause Z ′1 = 0 and X(X ′X)−1X ′1 = X(X ′X)−1X ′Xβ0 = Xβ0 = 1. We can also

write W ′ = Z ′P , where P = I − X(X ′X)−1X ′ is a symmetric projection, so that

n−1W ′W = n−1Z ′P 2Z = n−1Z ′PZ = n−1W ′Z = V − HF−1H . Note also that

Zβ = 0 ⇒ Wβ = 0, so W has at most rank k − 1.
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Appendix C

The test statistic can be conveniently calculated for a general (possibly seasonal) ARIMA

model which has been fitted using standard time domain methods. A function which im-

plements this is available from the authors; its arguments are the maximimum likelihood

parameter estimates and the residual series. These are used as follows to calculate the

quantities needed to carry out the test.

The weighted response Y (f ; β) = S∗(f)/S(f ; β) is taken as the sample spectrum of the

residual series. The weighted frequency domain regressors Xi(f ; β) = Si(f)/S(f ; β) are

determined from a linearisation of the model spectrum S(f ; β). They are the derivatives

of log S(f ; β). The test statistic is invariant to re-parameterisation, so at this point the

logarithm of the spectrum of the ARMA part (omitting integration) can be expressed as

log S(f ; β) = log(σ2
e) + log{α0 +

q
∑

j=1

αj 2 cos(2πjf)} − log{β0 +

p
∑

j=1

βj 2 cos(2πjf)},

where, taking φj and θj to be the estimated ARMA model parameters, and φ0 = θ0 = −1,

αj =
∑q−k

k=0 θkθj+k and βj =
∑p−k

k=0 φkφj+k. Setting SMA(f) = {α0 +
∑q

j=1 αj 2 cos(2πjf)}
and SAR(f) = {β0 +

∑p

j=1 βj 2 cos(2πjf)}, the required linearised regressors for the MA

and AR parts are respectively 2 cos(2πjf)/SMA(f), j = 1,. . . , q and −2 cos(2πjf)/SAR(f),

j=1,. . . , p. The regressor for the term log(σ2
e) may be omitted, because it is constant, and

the elements of g and H involving this term are all zero. Then H will in general be invertible.

The transformation (11) of the regressors, from Xi(f ; β) to Zi(f ; β), further requires the

function ΨL−1{exp(−i2πf)}, for which the coefficients Ψk may be directly calculated from

the fitted ARIMA model. The above procedure extends easily to multiplicative seasonal

ARIMA models of Box and Jenkins (1976). The regressors are augmented by seasonal

moving average and autoregressive terms similar to the non-seasonal terms, but replacing

cos(2πjf) with cos(2πjsf), where s is the seasonal period.

Because estimated ARIMA model parameters can suffer high collinearity, in implement-

ing our function we have replaced the simple matrix formula with numerically stable forms

using singular value decomposition. We have carried out checks that the procedure is highly

reliable, and gives results very close to those based on frequency domain estimation of the

models.
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